• Title/Summary/Keyword: Cu matrix

Search Result 443, Processing Time 0.024 seconds

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF

Characterization of Electrical Properties on Cu Diffusion in Low-k Dielectric Materials for ULSI Interconnect (반도체 배선용 저 유전 물질에서의 구리 확산에 대한 전기적 신뢰성 평가)

  • Lee Hee-Chan;Joo Young-Chang;Ro Hyun-Wook;Yoon Do-Young;Lee Jin-kyu;Char Kook-Heon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.9-15
    • /
    • 2004
  • We investigated the electrical properties of copolymer low-k materials that are compromised of the PMSSQ(Poly Methyl Silsesquioxane)-based matrix with the BTMSE (Bis Tri Methoxy Silyl Ethane) additives. We manufactured MIS-type test samples using the copolymer as the insulator and measured their leakage current and failure time by means of the BTS (bias-temperature-stress) test. The failure time was observed to decrease drastically when the porosity of the copolymer was increased over $30\%$. From the measurement of failure time with respect to temperature. the activation energy of Cu drift through the copolymer was calculated to be 1.51 eV.

  • PDF

Microstructure and Mechanical Properties of Sn-3.5wt.%Ag Solder with Bi Addition (Bi를 첨가한 Su-3.5wt.%Ag 땜납의 미세조직 및 기계적 성질)

  • Lee, Kyung-Ku;Baek, Dae-Hwa;Seo, Youn-Jong;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.239-245
    • /
    • 2001
  • Microstructure and mechanical properties of Sn-3.1 wt.%Ag-6.9 wt.%Bi system solders on Cu-substrate were studied. The Sn3.1 wt.%Ag-6.9 wt.%Bi alloy was designed by phase diagram and chemical properties and was prepared by melting in argon atmosphere. The mechanical properties of solder/Cu joints were examined by shear strength test, and also creep test. The microstructure of Sn-3.1 wt.%Ag-6.9 wt.%Bi alloy consists of Bi-rich phase and $Ag_3Sn$ precipitate in {\beta}-Sn$ matrix phase. The shear strength of the joint was decreased with aging treatment. Crack path under shear test was through the solder. Similar crack path change mode was observed at the creep test of solder/Cu joint. The creep behavior of Sn-3.1 wt.%Ag-6.9 wt.%Bi alloy represented the inverse primary creep behavior at all test condition. It is suggested that the inverse primary creep behavior is induced from Bi solute atoms in Sn-matrix. The creep resistance of Sn-3.1Ag-6.9Bi alloy is better than that of Sn-3.5 wt.%Ag alloy at all test conditions.

  • PDF

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan;Palanisamy, Kuppan;venugopal, Potu;Sandeep, Eesam;Kumar, Karrothu Varun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.

Dynamic Deformation Behavior of Zr-Based Bulk Amorphous Alloy after Annealing Treatments (벌크형 비정질 Zr계 합금의 결정화 열처리에 따른 동적변형 거동)

  • Chang J. J;Lee B. J;Hwang J. I;Park I. M;Cho K. M;Cho Y. R
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.181-185
    • /
    • 2004
  • The mechanical properties of a bulk amorphous alloy ($Zr_{41.2}$ $Ti_{13.8}$ /$Cu_{10}$ $Ni_{10}$ $Be_{22.5}$ /at.%) before and after an annealing treatment were investigated. For the bulk amorphous alloy, the compressive strength was about 2.0 GPa, irrespective of the strain rates in the range of $10^{-4}$ to $10^3$$ sec^{-1}$ . Fine-sized nanocrystalline particles (10~100 nm) were precipitated homogeneously in the bulk amorphous matrix after the annealing treatments. Compared to the bulk amorphous materials, these composite materials, composed of the nanocrystalline phases and a bulk amorphous matrix had much different mechanical properties. The strength and strain of coposite materials measured by a compressive test showed a peak-maximum values at 7 vol.% of the nanocrystalline phases. The values in higher volume fraction of the crystalline phases in the amorphous matrix were decreased, as measured by both quasi-static and high strain rate. The decrease in fracture strength is due to presence of the dispersed large-crystalline phases in the amorphous matrix.

A Study of Analytical Method for Trace Metal Ions in Whole Blood and Urine by Inductively Coupled Plasma-Mass Spectrometry using Solid-Liquid Extraction Technique (유도결합 플라스마-질량분석법과 고체-액체 추출법을 이용한 혈액 및 소변중 미량금속의 분석에 관한 연구)

  • Lee, Won;Hur, Young-Hoe;Park, Kyung-Su
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 1998
  • An analytical method for the simultaneous measurement of trace Cu, Sn, and Bi in blood and urine has been investigated by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Microwave oven was used for the pretreatment of blood samples using nitric acid and hydrogen peroxide in a closedvessel digestion system with 1 mL whole blood for 8 minutes. Amberlite IRC-718 resin was used as a solid phase in solid-liquid extraction technique for the removal of matrix interferences such as Na, S, P, and other polyatomic ion species. Detection limits for Cu, Sn, and Bi by this method were 0.000375 ng/mL, 0.000297 ng/mL, and 0.000174 ng/mL, respectively. Recoveries of 99.1% for Cu, 102.5% for Sn, and 98.4% for Bi were obtained for the standard spiked NIST SRM 955a blood sample. The developed method was applied for whole real blood and urine samples.

  • PDF

Microstructural properties of Pt-doped $YBa_{2}Cu_{3}O_{7-x}$ high $T_c$ superconductor prepared by melting method.

  • Song, Jin-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.16-16
    • /
    • 1992
  • We have studied the effect of platinum addition on the supercon ducting properties of YB $a_2$C $u_3$$O_{7-x}$ (123) compound and elucidated the mechanism of fine dispersion of $Y_2$BaCu $O_{5}$(211) particles in YB $a_2$C $u_3$$O_{7-x}$ superconductor prepared by melting method from the metallurgical point of view. In this study, BaCu $O_2$ and CuO-rich phase unreacted during the peritecitc reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-fee sintered samples exhibited 8~10$\mu$m in size, but in 1wt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2$\mu$m. And, the critical temperature( $T_{c. zero}$) of Pt doped samples was 91.5K and the transport critical current density ( $J_{c}$) of Pt-doped samples was much more than 10$^4$A/$\textrm{cm}^2$. The high $J_{c}$ and fine dispersion of 211 particles of Pt doped YB $a_2$C $u_3$$O_{7-x}$ superconductor are attributed to $Ba_4$CuP $t_2$ $O_{8}$ compounds formed during the partial melting, which were considered als nucleation sites of 211 particles, rather than Pt inself.han Pt inself.

  • PDF