• Title/Summary/Keyword: Cu electroplating

Search Result 163, Processing Time 0.022 seconds

Adhesion and Diffusion Barrier Properties of $TaN_x$ Films between Cu and $SiO_2$ (Cu 박막과 $SiO_2$ 절연막사이의 $TaN_x$ 박막의 접착 및 확산방지 특성)

  • Kim, Yong-Chul;Lee, Do-Seon;Lee, Won-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.19-24
    • /
    • 2009
  • Formation of an adhesion/barrier layer and a seed layer by sputtering techniques followed by electroplating has been one of the most widely used methods for the filling of through-Si via (TSV) with high aspect ratio for 3-D packaging. In this research, the adhesion and diffusion-barrier properties of the $TaN_x$ film deposited by reactive sputtering were investigated. The adhesion strength between Cu film and $SiO_2$/Si substrate was quantitatively measured by $180^{\circ}$ peel test and topple test as a function of the composition of the adhesive $TaN_x$ film. As the nitrogen content increased in the adhesive $TaN_x$ film, the adhesion strength between Cu and $SiO_2$/Si substrate increased, which was attributed to the increased formation of interfacial compound layer with the nitrogen flow rate. We also examined the diffusion-barrier properties of the $TaN_x$ films against Cu diffusion and found that it was improved with increasing nitrogen content in the $TaN_x$ film up to N/Ta ratio of 1.4.

  • PDF

A Study on the Electrochemical Deposition and p-Type Doping of ZnTe Films as a Back Contact Material for CdTe Photovoltaic Solar Cells (CdTe계 태양전지에 응용되는 ZnTe 박막의 전기화학적 제조 및 Cu 도핑 연구)

  • Kim, Dong-Hwan;Jeon, Yong-Seok;Kim, Gang-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.856-862
    • /
    • 1997
  • 박막형 CdTe/CdS 태양전지의 배면전극(back contacts)물질로서 Cu도핑된 ZnTe 박막(ZnTe:Cu)을 전착법(electroplating)으로 제조하는 연구를 수행하였다. Sulfate계의 전해질 수용액에서 CdTe 기판과 투명전극으로 코팅된 유리(In$_{2}$O$_{3}$: Sn, ITO)기판 위에 ZnTe 박막을 코팅하는 방법으로써 potentiostat와 기판(cathode), Pt counter electrode, Ag/AgCI 표준전극으로 구성된 장치를 사용하여 pH=2.5-4, T=70-8$0^{\circ}C$, 0.02M $Zn^{2+}$ 1x$10^{-4}$M TeO$_{2}$, 0.2M $K_{2}$SO$_{4}$조건에서 -0.800 Vs~-0.975 V 범위의 전압(V$_{a}$ )에 걸쳐 실험하였다. ITO박막을 기판으로 사용하여 cyclic voltammogram을 작성한 결과 약 -0.50 V 에서 Te환원 peak이 나타났다. Auger electron spectroscopy (AES)로 조성분석한 결과 표면에서 Zn signal이 강하게 나왔고 시편의 두께에 따라 Zn의 signal감소하는 반면 Cd signal은 증가하는 것이 확인되었다. SEM 사진으로부터 ZnTe의 표면이 작은 입자 (0.2$\mu\textrm{m}$ 이하)로 구성되어 있으며 낮은 V$_{a}$ 에서는 입자가 작아지면서 조직이 치밀해짐이 관찰되었다. Optical transmission방법에 의하여 ITO기판위에 입혀진 박막의 밴드갭은 2.5 eV으로 측정되었다. 수용액중의 Cu$_{2+}$와 triethanolamine(TEA)은 산성용액에서 착물형성이 이루어지지 않았으며 1,10-phenanthroline과는 pH=2에서도 착물이 형성되었다.

  • PDF

Effects of Post-deposition Annealing on the Copper Films Electrodeposited on the ECR Plasma Cleaned Copper Seed Layer (ECR plasma로 전처리된 Cu seed층 위에 전해도금 된 Cu 막에 대한 Annealing의 효과)

  • Lee, Han-seung;Kwon, Duk-ryel;Park, Hyun-ah;Lee, Chong-mu
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.174-179
    • /
    • 2003
  • Thin copper films were grown by electrodeposition on copper seed layers which were grown by sputtering of an ultra-pure copper target on tantalum nitride-coated silicon wafers and subsequently, cleaned in ECR plasma. The copper films were then subjected to ⅰ) vacuum annealing, ⅱ) rapid thermal annealing (RTA) and ⅲ) rapid thermal nitriding (RTN) at various temperatures over different periods of time. XRD, SEM, AFM and resistivity measurements were done to ascertain the optimum heat treatment condition for obtaining film with minimum resistivity, predominantly (111)-oriented and smoother surface morphology. The as-deposited film has a resistivity of ∼6.3 $\mu$$\Omega$-cm and a relatively small intensity ratio of (111) and (200) peaks. With heat treatment, the resistivity decreases and the (111) peak becomes dominant, along with improved smoothness of the copper film. The optimum condition (with a resistivity of 1.98 $\mu$$\Omega$-cm) is suggested as the rapid thermal nitriding at 400oC for 120 sec.

Influence of brass laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

  • Bautista, Zhierwinjay M.;Shin, Hyung-Seop;Lee, Jae-Hun;Lee, Hunju;Moon, Seung-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.6-9
    • /
    • 2016
  • The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their $I_c$ behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of $I_c$ in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

A study on the uniformity of the electrodeposits in Pb-Sn-Cu ternary alloy plating (Pb-Sn-Cu삼원 합금 전착층의 균일성 연구)

  • NamGoong, E.;Gwon, Sik-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.3
    • /
    • pp.105-115
    • /
    • 1985
  • Lead-tin-copper ternary alloy electrodeposition is conducted onto the inner bore surface of plain bearings as an overlay in order to investigate the effect of slot width, current density and fluoboric acid concentration on the uniformity of overlay. The thickness of overlay is analyzed by means of current distribution resulting from the overvoltage of plating bath and the apparent distance between cathode and anode. The result demonstrate that the uniformity of overlay is remarkably dependent of the slot size and current density, but has little bearing on the fluoboric acid concentration over 100g/L. This present study indicates that uniform overlay is obtainable within the tolerable thickness of ${\pm}2{\mu}m$ by using the slot width of 22mm. The surface morphology examination also shows the important role of concentration polarization of the micro-uniformity of overlay. The micro-uniformity has improved at the low concentration polarization which resulted from operating at the low current density and high fluoboric acid concentration. The surface morphology of deposits exhibits the vivid pyramid crystalline in the plating condition of low concentration polarizatio and all deposits have columnar structure parallel to the applied electric field regardless of the electroplating condition used.

  • PDF

A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations (전기화학적 해석을 통한 PCB용 구리도금에 대한 전류밀도의 영향성 연구)

  • Kim, Seong-Jin;Shin, Han-Kyun;Park, Hyun;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2022
  • The copper plating process used to fabricate the submicron damascene pattern of Cu wiring for Si wafer was applied to the plating of a PCB pattern of several tens of microns in size using the same organic additives and current density conditions. In this case, the non-uniformity of the plating thickness inside the pattern was observed. In order to quantitatively analyze the cause, a numerical calculation considering the solution flow and electric field was carried out. The calculation confirmed that the depletion of Cu2+ ions in the solution occurred relatively earlier at the bottom corner than the upper part of the pattern due to the plating of the sidewall and the bottom at the corner of the pattern bottom. The diffusion coefficient of Cu2+ ions is 2.65 10-10 m2/s, which means that Cu2+ ions move at 16.3 ㎛ per second on average. In the cases of small damascene patterns, the velocity of Cu2+ ions is high enough to supply sufficient ions to the inside of the patterns, while sufficient time is required to replenish the exhausted copper ions in the case of a PCB pattern having a size of several tens of microns. Therefore, it is found that the thickness uniformity can be improved by reducing the current density to supply sufficient copper ions to the target area.

Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow (Cu Reflow를 이용한 Pd-Cu-Ni 합금 수소분리막 특성)

  • Kim, Dong-Won;Kim, Heung-Gu;Um, Ki-Youn;Kim, Sang-Ho;Lee, In-Seon;Park, Jong-Su;Ryi, Shin-Kun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.160-165
    • /
    • 2006
  • A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel powder. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue. Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activation. Nickel was electroplated to a thickness of $2{\mu}m$ in order in to fill micropores at the nickel support surface. Palladium and copper were deposited at thicknesses of $4{\mu}m$ and $0.5{\mu}m$, respectively, on the nickel coated support by DC sputtering process. Subsequently, copper reflow at $700^{\circ}C$ was performed for an hour in $H_2$ ambient. And, as a result PdCu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to the porous nickel support and infinite hydrogen selectivity in $H_2/N_2$ mixtures.

Plasma를 통한 기판 전처리가 구리박막 성장에 미치는 영향

  • Jin, Seong-Eon;Choe, Jong-Mun;Lee, Do-Han;Lee, Seung-Mu;Byeon, Dong-Jin;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • 반도체 공정에서의 금속 배선 공정은 매우 중요한 공정 중 하나이다. 기존에 사용되던 알루미늄이 한계에 다다르면서, 대체 재료로 사용되고있는 구리는 낮은 비저항, 높은 열전도도, 우수한 electromigration(EM)저항특성 등을 바탕으로 차세대 nano-scale집적회로의 interconnect application에 적합한 금속재료로서 각광받고 있다. Electroplating을 위한 구리 seed layer CVD 공정은 타 공정에 비해 step coverage가 우수한 막을 증착할 수 있어 고집적 소자의 구현이 가능하다. 본 연구에 이용된 2가 전구체 Cu(dmamb)2는 높은 증기압과 높은 활성화 에너지를 가짐으로서 열적안정성 및 보관안정성이 우수하며, 플루오르를 함유하지 않아 친환경적이다. 구리 증착 전 기판에 plasma 처리를 하면 표면 morphology가 변함에 따라 표면 에너지가 변화하고, 이는 구리의 2차원 성장에 유리하게 작용할 것으로 여겨진다. Plasma의 조건변화에 따른 기판의 morphology 변화 및 성막된 구리의 특성 변화를 분석하였다.

  • PDF

Copper Electroplating on Mg Alloy in Pyrophosphate Solution

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.124.1-124.1
    • /
    • 2016
  • In this work, uniform thickness and good adhesion of electrodeposited copper layer were achieved on AZ91 Mg alloy in alkaline noncyanide copper solution containing pyrophosphate ion by employing appropriate zincate pretreatment. Without zincate pretreatment, the electrodeposited copper layer on AZ91 Mg alloy was porous and showed poor adhesion which was explained by small number of nucleation sites of copper due to rapid dissolution of the magnesium substrate in the pyrophosphate solution. The zincate pretreatment was found as one of the most important steps that can form a conducting layer to cover AZ91 surface which decreased the dissolution rate of AZ91 Mg alloy about 40 times in the copper pyrophosphate solution. Electrodeposited copper layer on AZ91 Mg alloy after an appropriate zincate pretreatment showed good adhesion and uniform thickness with bright surface appearance, independent of the deposition time but the surface roughness of the electrodeposited copper layer increased with increasing Cu deposition time.

  • PDF

manufacturing micro CPL (Capillary Pumped Loop)by using LIGA process (LIGA process를 이용한 micro CPL(Capillary Pumped Loop)제작)

  • Cho, Jin-Woo;Jung, Suk-Won;Park, Joon-Shik;Park, Sun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1881-1883
    • /
    • 2001
  • We manufactured a micro CPL by LlGA process, a new conceptual ultra-fine and precise forming method, using X-ray lithography process. We fabricated a BN X-ray mask having properties of good X-ray transmittance and large mechanical strength. Micro CPL was manufactured by dividing into an upper plate and a low plate. Each of plates was bonded by Ag paste screen printing. The upper plate was fabricated on glass wafer to observe flow and phase transformation of cooling solution. The lower plate was manufactured by Cu electroplating for good heat transmission. Precision of inner Parts, micro pin and micro channel, of manufactured micro CPL is under ${\pm}2{\mu}m$.

  • PDF