• Title/Summary/Keyword: Cu diffusion

Search Result 443, Processing Time 0.027 seconds

Effect of High Pressure of Voltammetric Parameters of Copper (구리의 전압전류법적 파라미터에 미치는 압력의 영향)

  • Zun Ung Bae;Heung Lark Lee;Hong Soon Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.399-405
    • /
    • 1989
  • The dependence of voltammetric parameters on the pressure for the reduction of Cu(II) in 0.5M KCl aqueous solution has been studied. In this system micro platinum electrode, standard calomel electrode and a helix type of platinum wire were used as the working, the reference and the auxilary electrode, respectively. With increasing the pressure from 1 to 1,800 bars, the half wave potentials of first reduction wave are shifted to the more negative potentials. And the diffusion currents of first and second reduction wave become considerably larger with increase in pressure from 1 to about 1,000 bars but are getting smaller beyond 1,000 bars. The good linear relationships between diffusion current and the concentrations of Cu(II) are established over all pressure range($1{\sim}1,800$ bars). The reversibility of the each reduction step is not changed with increasing pressure.

  • PDF

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Preferential Oxidation of CO over Cu/Ti-SBA-15 Catalysts (Cu 담지 Ti-SBA-15 촉매의 선택적 CO 산화 반응)

  • Kim, Joon-Woo;Park, Jae-Woo;Lee, Jong-Soo;Choi, Han-Seul;Choung, Suk-Jin
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.432-437
    • /
    • 2013
  • The CO preferential oxidation reaction (PROX) has been done using Cu catalytic active species supported on some of mesoporous silica materials which can facilitate the diffusion of the reactants in order to prevent the poisoning of anode active materials by CO molecules during driving polymer electrolyte fuel cells (PEMFC) in this study. As a result when SBA-15 with large pore used as a support showed excellent CO oxidation activity, especially the activity increased in proportion to the amount of supported Cu. Ti components which was inserted to increase the degree of dispersion of Cu, contributed to improving the performance for CO oxidation at low-temperature. The degree of dispersion of Cu ingredients was the best in the catalyst inserted 20 mol-% Ti into the framework of SBA-15, and CO oxidation activity was also improved.

Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion (역확산을 고려한 이원합금의 비평형 수지상응고 해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3361-3370
    • /
    • 1996
  • Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit.

A Study on Improvment of Washing Fastness by Treatment with Copper Sulfate/Thiourea(III) (황산구리/치오요소 처리에 의한 습윤견뢰도 증진에 관한 연구(III))

  • 윤정임;김경환
    • Textile Coloration and Finishing
    • /
    • v.7 no.1
    • /
    • pp.72-79
    • /
    • 1995
  • The effect of copper sulfate/thiourea on the diffusion and the dye exhaustion of two dyes, C. I. Acid Orange 7 and C. I. Food Yellow 3 in nylon 6 fiber has been studied. The results obtained from the experimetal are as follows : 1) Copper sulfate reacted with thiourea at constant temperature and then generated the colorless trasparent coordination compound, and then combinated end group of carboxyl of nylon 6 fiber. 2) The coordination compound [$Cu_{2}$($TU_{6}$)] ($(SO_{4})_2$) is conducted at pH 5-6 in solution intensity and repulsed the sulfonic acid group of dyes, and therefore the diffusion of dyes is restraint. 3) Dye uptake and diffusion coefficient were decreased in the order of untreated > copper sulfate/thiourea-treated > tannin-treated.

  • PDF

Study on synthesis of carbon nanomaterials by hydrogen mixing in counterflow methane diffusion flames (메탄 대향류 확산화염내 수소를 첨가한 탄소나노물질 합성에 관한 연구)

  • Shin, Woo-Jung;Choi, Jung-Sik;Yoon, Seok-Hun;Lee, Hyun-Sik;Choi, Jae-Hyuk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.88-89
    • /
    • 2011
  • The study on synthesis of carbon nanomaterials by H2 mixing in counterflow methane diffusion flames has been experimentally conducted. We have also investigated on effect of catalyst and temperature in flame. The counterflow flame was formed by many kind of gas (fuel side using $CH_4-H_2-N_2$ and oxidizer side $N_2-O_2$) and nitrogen shields discharge on each other side to cut off oxidizer of the atmosphere. Ferrocene was used as a metal catalyst for CNTs synthesis. substrate was used to deposit carbon nanomaterials and these were analyzed by FE-SEM. We could find that carbon nanotubes and many kind of carbon nano materials were formed in Cu wire substrate, through this experiment.

  • PDF

Interfacial reactions in Cu/NbTi multilayer thin films and superconducting wires (임게전류밀도 향상을 위한 Cu/NbTi다층박막과 초전도 선재에서의 계면반응)

  • 심재엽;백홍구;하동우;오상수;류강식
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.478-486
    • /
    • 1995
  • Cu/NbTi multilayer thin films and superconducting wires were fabricated and heat treated with conventional annealing and analyzed by differential scanning calorimetry (DSC) as a basic study for the enhancement of Jc. Interfacial reactions of Cu/NbTi multilayer thin films and superconducting wires were investigated with optical microscope, SEM, and XRD. According to the effective heat of formation (EHF) model, CU$\_$3/Ti was predicted as a first phase. However, considering the crystalline structure and thermodynamics, CuTi was predicted as a first phase. According to the results of DSC and XRD, CU$\_$2/Ti was found to be the first phase, followed by the formation Of CU$\_$4/Ti. The difference in first crystalline phase between the experimental result and the predicted one was discussed. In case of Cu/NbTi superconducting wires, the compounds formed at the Cu/NbTi interface grew with annealing time and the amount of compounds formed in Nb-47wt%Ti alloy was larger than that in Nb-50wt%Ti alloy. It seemed that the incubation time for the formation of compounds in Nb-50wt%Ti alloy was longer than that formed in Nb-47wt%Ti alloy. Also, the diffusion was the rate controlling step for the growth of compounds in all specimens. These compounds were formed at 500-600.deg. C for I hour annealing and, thus, the drawing time below I hour must be required to minimize the growth of compounds for the enhancement of Jc.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.