• 제목/요약/키워드: Cu Nanoparticle

검색결과 105건 처리시간 0.031초

난류용탕 in-situ 합성법에 의해 제조된 TiB2 입자강화 Cu 기지 복합재료의 특성 (Characterization of TiB2 Particle Reinforced Cu Matrix Composites Processed by Turbulent In-situ Mixing)

  • 김정훈;윤지훈;이길근;최일동;박용호;조경목;박익민
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.809-813
    • /
    • 2005
  • A copper matrix composite reinforced by turbulent in-situ $TiB_2$ nanoparticle was Prepared by reactions of boron ana titanium. The microstructure, mechanical and electrical properties of the as-drawn composites were investigated. The results showed that the formed $TiB_2$ particles, which had a size of about from 50 to 200nm, exhibited a homogeneous dispersion in the copper matrix. Due to their reinforcement, the hardness and Young's modulus of $Cu-TiB_2$ composites were enhanced with increasing the cooling rate. Moreover, the electrical conductivity of the composites were improved with increasing the cooling rate.

복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구 (Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating)

  • 박정수;김상호;한정섭
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

금속 마이크로입자 및 압밀 시편의 펄스레이저 어블레이션에 의한 나노입자 합성 (Nanoparticle Synthesis by Pulsed Laser Ablation of Metal Microparticle and Consolidated Sample)

  • 김동식;장덕석
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1335-1341
    • /
    • 2003
  • This paper describes the process of nanoparticle synthesis by laser ablation of microparticles and consolidated sample. We have generated nanoparticles by high-power pulsed laser ablation of AI, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355nm, FWHM 6ns, fluence $0.8{\sim}2.0J/cm^2$). Microparticles of mean diameter $18{\sim}80{\mu}m$ are ablated in the ambient air. The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence, collector position and compacting pressure on the distribution of particle size is investigated. To better understand the process of laser ablation of microparticle(LAM), we investigated the Nd: YAG laser-induced breakdown of Cu microparticle using time-resolved optical shadow images. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성 (Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste)

  • 박승우;손재홍;심상보;최연빈;배동식
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Non-vacuum processing of CIGS absorber layer using nanoparticle

  • Ham, Chang-Woo;Song, Ki-Bong;Suh, Jeong-Dae;Cho, Jung-Min
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.267-267
    • /
    • 2009
  • Solar cells with CIGS absorber layers have proven their suitability for high efficiency and stable low cost solar cells. We prepared and characterized particle based CIGS thin film using a non-vacuum processing. CIGS powder were obtained at $240^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$, Se powder in solvent. The nanoparticle precursors were mixed with binder material. The CIGS thin film deposited on a sodalime glass. The CIGS thin film were identified to have a typical chalcopyrite tetragonal structure by using UV/Visible-spectroscopy, X-ray diffraction(XRD), Auger Electron Spectroscopy(AES), Scanning Electron Microscopy(SEM).

  • PDF

압밀 금속 마이크로 입자의 펄스 레이저 ABLATION에 의한 나노입자 합성 (Nanoparticle Synthesis by Pulsed Laser Ablation of Consolidated Microparticles)

  • 장덕석;오부국;김동식
    • 한국레이저가공학회지
    • /
    • 제5권2호
    • /
    • pp.31-38
    • /
    • 2002
  • This paper describes the process of nanoparticle synthesis by laser ablation of consolidated microparticles. We have generated nanoparticles by high-power pulsed laser ablation of Al, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355 nm, FWHM 5 ㎱, fluence 0.8∼2.0 J/㎠). Microparticles of mean diameter 18∼80 ㎛ are ablated in the ambient air The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence and collector position on the distribution of particle size is investigated. The dynamics of ablation plume and shock wave is analyzed by monitoring the photoacoustic probe-beam deflection signal. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

  • PDF

Atomic Force Microscopy (AFM) Tip based Nanoelectrode with Hydrogel Electrolyte and Application to Single-Nanoparticle Electrochemistry

  • Kyungsoon Park;Thanh Duc Dinh;Seongpil Hwang
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.261-267
    • /
    • 2024
  • An unconventional fabrication technique of nanoelectrode was developed using atomic force microscopy (AFM) and hydrogel. Until now, the precise control of electroactive area down to a few nm2 has always been an obstacle, which limits the wide application of nanoelectrodes. Here, the nanometer-sized contact between the boron-doped diamond (BDD) as conductive AFM tip and the agarose hydrogel as solid electrolyte was well governed by the feedback amplitude of oscillation in the non-contact mode of AFM. Consequently, this low-cost and feasible approach gives rise to new possibilities for the fabrication of nanoelectrodes. The electroactive area controlled by the set point of AFM was investigated by cyclic voltammetry (CV) of the ferrocenmethanol (FcMeOH) combined with quasi-solid agarose hydrogel as an electrolyte. Single copper (Cu) nanoparticle was deposited at the apex of the AFM tip using this platform whose electrocatalytic activity for nitrate reduction was then investigated by CV and Field Emission-Scanning Electron Microscopy (FE-SEM), respectively.