DOI QR코드

DOI QR Code

Atomic Force Microscopy (AFM) Tip based Nanoelectrode with Hydrogel Electrolyte and Application to Single-Nanoparticle Electrochemistry

  • Kyungsoon Park (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Thanh Duc Dinh (Department of Advanced Materials Chemistry, Korea University) ;
  • Seongpil Hwang (Department of Advanced Materials Chemistry, Korea University)
  • 투고 : 2023.10.23
  • 심사 : 2023.11.06
  • 발행 : 2024.05.31

초록

An unconventional fabrication technique of nanoelectrode was developed using atomic force microscopy (AFM) and hydrogel. Until now, the precise control of electroactive area down to a few nm2 has always been an obstacle, which limits the wide application of nanoelectrodes. Here, the nanometer-sized contact between the boron-doped diamond (BDD) as conductive AFM tip and the agarose hydrogel as solid electrolyte was well governed by the feedback amplitude of oscillation in the non-contact mode of AFM. Consequently, this low-cost and feasible approach gives rise to new possibilities for the fabrication of nanoelectrodes. The electroactive area controlled by the set point of AFM was investigated by cyclic voltammetry (CV) of the ferrocenmethanol (FcMeOH) combined with quasi-solid agarose hydrogel as an electrolyte. Single copper (Cu) nanoparticle was deposited at the apex of the AFM tip using this platform whose electrocatalytic activity for nitrate reduction was then investigated by CV and Field Emission-Scanning Electron Microscopy (FE-SEM), respectively.

키워드

과제정보

S. H. acknowledges the support from Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. RS-2023-00209181). This work was supported by a Korea University Grant. Also, K.P. acknowledges the support from Basic Science Research Program to Research Institute for Basic Sciences (RIBS) of Jeju National University through the National Research Foundation of Korea (NRF) funded by the Ministry of Education. (2019R1A6A1A10072987). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3072996).

참고문헌

  1. F. Zhang, M. A. Edwards, R. Hao, H. S. White and B. Zhang, J. Phys. Chem. C, 2017, 121(42), 23564-23573.
  2. O. J. Wahab, M. Kang and P. R. Unwin, Curr. Opin. Electrochem., 2020, 22, 120-128.
  3. Q. Chen, L. Luo, H. Faraji, S. W. Feldberg, and H. S. White, J. Phys. Chem. Lett., 2014, 5(20), 3539-3544.
  4. Y. Yu, Y. Gao, K. Hu, P.-Y. Blanchard, J.-M. Noel, T. Nareshkumar, K. L. Phani, G. Friedman, Y. Gogotsi, and M. V. Mirkin, ChemElectroChem, 2015, 2(1), 58-63.
  5. J. Clausmeyer, J. Masa, E. Ventosa, D. Ohl, and W. Schuhmann, Chem. Commun., 2016, 52, 2408-2411.
  6. H. B. Aiyappa, P. Wilde, T. Quast, J. Masa, C. Andronescu, Y.-T. Chen, M. Muhler, R. A. Fischer, and W. Schuhmann, Angew. Chem. Int. Ed., 2019, 58(26), 8927-8931.
  7. S. E. Salamifar and R. Y. Lai, Anal. Chem., 2014, 86(6), 2849-2852.
  8. D.-S. Kim, E.-S. Kang, S. Baek, S.-S. Choo, Y.-H. Chung, D. Lee, J. Min, and T.-H. Kim, Sci. Rep., 2018, 8, 14049.
  9. C. G. Zoski, Electroanalysis, 2002, 14(15-16), 1041-1051.
  10. D. W. M. Arrigan, Analyst, 2004, 129, 1157-1165.
  11. R. W. Murray, Chem. Rev., 2008, 108(7), 2688-2720.
  12. X. Xiao, F.-R. F. Fan, J. Zhou, and A. J. Bard, J. Am. Chem. Soc., 2008, 130, 16669-16677.
  13. W. Cheng and R. G. Compton, Trends Anal. Chem., 2014, 58, 79-89.
  14. M. V. Mirkin, T. Sun, Y. Yu, and M. Zhou, Acc. Chem. Res., 2016, 49(10), 2328-2335.
  15. W. Xu, G. Zou, H. Hou, and X. Ji, Small, 2019, 15(32), 1804908.
  16. S. M. Oja, D. A. Robinson, N. J. Vitti, M. A. Edwards, Y. Liu, H. S. White, and B. Zhang, J. Am. Chem. Soc., 2017, 139(2), 708-718
  17. L. Sun, W. Wang, and H.-Y. Chen, ChemElectroChem, 2018, 5(20), 2995-2999.
  18. W. Wei, T. Yuan, W. Jiang, J. Gao, H.-Y. Chen, and W. Wang, J. Am. Chem. Soc., 2020, 142(33), 14307-14313.
  19. B. B. Katemann and W. Schuhmann, Electroanalysis, 2002, 14, 22-28.
  20. Y. Li, D. Bergman, and B. Zhang, Anal. Chem., 2009, 81(13), 5496-5502.
  21. B. K. Jena, S. J. Percival, and B. Zhang, Anal. Chem., 2010, 82(15), 6737-6743.
  22. N. Jalili and K. Laxminarayana, Mechatronics, 2004, 14(8), 907-945.
  23. W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Surf. Sci. Rep., 2011, 66(1), 1-27.
  24. S. Manne, P. K. Hansma, J. Massie, V. B. Elings, and A. A. Gewirth, Science, 1991, 251(4990), 183-186.
  25. J. V. Macpherson and P. R. Unwin, Anal. Chem., 2000, 72(2), 276-285.
  26. A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, Angew. Chem. Int. Ed., 2003, 42(34), 3996-4028.
  27. C. Kranz, A. Kueng, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, Ultramicroscopy, 2004, 100(3-4), 127-134.
  28. H. Kang, S. Hwang, and J. Kwak, Nanoscale, 2015, 7, 994-1001.
  29. T. D. Dinh, K. Park, and S. Hwang, Anal. Chem., 2023, 95(30), 11181-11186.
  30. H. Kang and S. Hwang, Int. J. Electrochem. Sci., 2015, 10, 9706-9713.
  31. S. E. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, Angew. Chem. Int. Ed., 2014, 53(14), 3558-3586.
  32. S. Chen and A. Kucernak, J. Phys. Chem. B, 2003, 107, 8392-8402.
  33. S. Chen and A. Kucernak, Electrochem. Commun., 2002, 4(1), 80-85.
  34. S. Hwang, Int. J. Electrochem. Sci., 2012, 7(3), 1820-1826.
  35. Y. Wang, W. Zhou, R. Jia, Y. Yu, and B. Zhang, Angew. Chem. Int. Ed., 2020, 59(13), 5350-5354.
  36. Z. Mumtarin, M. M. Rahman, H. M. Marwani, and M. A. Hasnat, Electrochim. Acta, 2020, 346, 135994.
  37. T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang, and Y. Xu, Chem. Eng. J., 2021, 426, 130759.