• 제목/요약/키워드: Cu Metallization

검색결과 128건 처리시간 0.024초

MCM-D 기판 내장형 수동소자 제조공정 (Fabrication process of embedded passive components in MCM-D)

  • 주철원;이영민;이상복;현석봉;박성수;송민규
    • 마이크로전자및패키징학회지
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 1999
  • MCM-D 기판에 수동소자를 내장시키는 공정을 개발하였다. MCM-D 기판은 Cu/감광성 BCB를 각각 금속배선 및 절연막 재료로 사용하였고, 금속배선은 Ti/cu를 각각 1000$\AA$/3000$\AA$으로 스퍼터한 후 fountain 방식으로 전기 도금하여 3 um Cu를 형성하였으며, BCB 층에 신뢰성있는 비아형성을 위하여 BCB의 공정특성과 $C_2F_6$를 사용한 플라즈마 cleaning영향을 AES로 분석하였다. 이 실험에서 제작한 MCM-D 기판은 절연막과 금속배선 층이 각각 5개, 4개 층으로 구성되는데 저항은 2번째 절연막 위에 thermal evaporator 방식으로 NiCr을 600$\AA$증착하여 시트저항이 21 $\Omega$/sq가 되게 형성하였고. 인덕터는 coplanar 구조로 3, 4번째 금속배선층에 형성하였으며, 커패시터는 절연막으로 PECVD $Si_3N_4$를 900$\AA$증착한 후 1, 2번째 금속배선층에 형성하여 88nF/$\textrm {cm}^2$의 커패시턴스를 얻었다. 이 공정은 PECVD $Si_3N_4$와 thermal evaporation NiCr 공정을 이용함으로써 기존의 반도체 공정을 이용하여 MCM-D 기판에 수동소자를 안정적으로 내장시킬 수 있었다.

  • PDF

초음파를 이용한 Sn-3.5Ag 플립칩 접합부의 신뢰성 평가 - Si웨이퍼와 Sn-3.5Ag 솔더의 접합 계면 특성 연구 (Flip Chip Solder Joint Reliability of Sn-3.5Ag Solder Using Ultrasonic Bonding - Study of the interface between Si-wafer and Sn-3.5Ag solder)

  • 김정모;김숙환;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제13권1호통권38호
    • /
    • pp.23-29
    • /
    • 2006
  • Si-웨이퍼와 FR-4 기판을 상온에서 초음파 접합한 후, 접합부의 신뢰성을 평가하였다. Si-웨이퍼 상의 UBM(Under Bump Metallization)은 위에서부터 Cu/ Ni/ Al을 각각 $0.4{\mu}m,\;0.4{\mu}m,\;0.3{\mu}m$의 두께로 전자빔으로 증착하였다. FR-4 기판위의 패드는 위에서부터 Au/ Ni/ Cu를 각각 $0.05{\mu}m,\;5{\mu}m,\;18{\mu}m$의 두께로 전해 도금하여 형성하였다. 접합용 솔도로는 Sn-3.5wt%Ag을 두께 $100{\mu}m$으로 압연하여 사용하였다. 시편의 초음파 접합을 위하여 초음파 접합 시간을 0.5초에서 3.0초까지 0.5초 단위로 증가시키면서 상온에서 접합하였으며, 이 때 출력은 1,400W로 하였다. 실험 결과, 상온 초음파 접합법에 의해 신뢰성 있는 'Si-웨이퍼/솔더/FR-4기판' 접합부를 얻을 수 있었다. 접합부의 전단 강도는 접합 시간에 따라 증가하여 접합 시간 2.5초에서 65N으로 가장 높게 측정되었다. 이 후 접합 시간 3.0초에서는 전단 강도가 34N으로 감소하였는데, 이는 초음파 접합시간이 과도해지면서 Si-웨이퍼와 솔더 사이의 계면을 따라 균열이 발생되었기 때문으로 판단된다. 초음파 접합에 의해 Si-웨이퍼와 솔더 사이에서 생성된 금속간 화합물은 ($(Cu,Ni)_{6}Sn_{5}$)으로 확인되었다.

  • PDF

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

  • Peng, Zhuoyin;Liu, Zhou;Chen, Jianlin;Liao, Lida;Chen, Jian;Li, Cong;Li, Wei
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.718-724
    • /
    • 2018
  • With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

접촉 공진 힘 현미경 기술을 이용한 플립 칩 범프 재료의 국부 탄성계수 측정 (Measurement of Local Elastic Properties of Flip-chip Bump Materials using Contact Resonance Force Microscopy)

  • 김대현;안효석;한준희
    • Tribology and Lubricants
    • /
    • 제28권4호
    • /
    • pp.173-177
    • /
    • 2012
  • We used contact resonance force microscopy (CRFM) technique to determine the quantitative elastic properties of multiple materials integrated on the sub micrometer scale. The CRFM approach measures the frequencies of an AFM cantilever's first two flexural resonances while in contact with a material. The plain strain modulus of an unknown or test material can be obtained by comparing the resonant spectrum of the test material to that of a reference material. In this study we examined the following bumping materials for flip chip by using copper electrode as a reference material: NiP, Solder (Sn-Au-Cu alloy) and under filled epoxy. Data were analyzed by conventional beam dynamics and contact dynamics. The results showed a good agreement (~15% difference) with corresponding values determined by nanoindentaion. These results provide insight into the use of CRFM methods to attain reliable and accurate measurements of elastic properties of materials on the nanoscale.

Electron Scattering at Grain Boundaries in Tungsten Thin Films

  • 최두호;김병준;이승훈;정성훈;김도근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.243.2-243.2
    • /
    • 2016
  • Tungsten (W) is recently gaining attention as a potential candidate to replace Cu in semiconductor metallization due to its expected improvement in material reliability and reduced resistivity size effect. In this study, the impact of electron scattering at grain boundaries in a polycrystalline W thin film was investigated. Two nominally 300 nm-thick films, a (110)-oriented single crystal film and a (110)-textured polycrystalline W film, were prepared onto (11-20) Al2O3 substrate and thermally oxidized Si substrate, respectively in identical fabrication conditions. The lateral grain size for the polycrystalline film was determined to be $119{\pm}7nm$ by TEM-based orientation mapping technique. The film thickness was chosen to significantly exceed the electron mean free path in W (16.1 and 77.7 nm at 293 and 4.2 K, respectively), which allows the impact of surface scattering on film resistivity to be negligible. Then, the difference in the resistivity of the two films can be attributed to grain boundary scattering. quantitative analyses were performed by employing the Mayadas-Shatzkes (MS) model, where the grain boundary reflection coefficient was determined to be $0.42{\pm}0.02$ and $0.40{\pm}0.02$ at 293 K and 4.2 K, respectively.

  • PDF

구리 CMP 공정변수 최적화를 위한 실험계획법(DOE) 연구 (A Study on DOE Method to Optimize the Process Parameters for Cu CMP)

  • 최민호;김남훈;김상용;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제18권1호
    • /
    • pp.24-29
    • /
    • 2005
  • Chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing. Copper has been the candidate metallization material for ultra-large scale integrated circuits (ULSIs), owing to its excellent electro-migration resistance and low electrical resistance. However, it still has various problems in copper CMP process. Thus, it is important to understand the effect of the process variables such as turntable speed, head speed, down force and back pressure are very important parameters that must be carefully formulated in order to achieve desired the removal rates and non-uniformity. Using a design of experiment (DOE) approach, this study was performed investigating the main effect of the variables and the interaction between the various parameters during CMP. A better understanding of the interaction behavior between the various parameters and the effect on removal rate, non-uniformity and ETC (edge to center) is achieved by using the statistical analysis techniques. In the experimental tests, the optimum parameters which were derived from the statistical analysis could be found for higher removal rate and lower non-uniformity through the above DOE results.

Characterization of Copper Saturated-$Ge_xTe_{1-x}$ Solid Electrolyte Films Incoperated by Nitrogen for Programmable Metalization Cell Memory Device

  • Lee, Soo-Jin;Yoon, Soon-Gil;Yoon, Sung-Min;Yu, Byoung-Gon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.174-175
    • /
    • 2007
  • A programmable metallization cell (PMC) memory structure with copper-saturated GeTe solid electrolyte films doped by nitrogen was prepared on a TiW bottom electrode by a co-sputtering technique at room temperature. The $Ge_{45}Te_{55}$ solid electrolyte films deposited with various $N_2$/Ar flow ratios showed an increase of crystallization temperature and especially, the electrolyte films deposited at $N_2$/Ar ratios above 30% showed a crystallization temperature above $400^{\circ}C$, resulting in surviving in a back-end process in semiconductor memory devices. The device with a 200 nm thick $Cu_{1-x}(Ge_{45}Te_{55})_x$ electrolyte switches at 1 V from an "off " state resistance, $R_{off}$, close to $10^5$ to an "on" resistance state, Ron, more than 20rders of magnitude lower for this programming current.

  • PDF

Metallization of Polymers Modified by Ton-Assisted Reaction (IAR)

  • J.S. Cho;Bang, Wan-Keun;Kim, K.H.;Sang Han;Y.B. Sun;S.K. Koh
    • 마이크로전자및패키징학회지
    • /
    • 제8권1호
    • /
    • pp.53-59
    • /
    • 2001
  • Surfaces of PTFE and PVDF were modified by ion-assisted reaction (IAR) in which 1 keV $Ar^{+}$ ions were irradiated on the surface of the polymer with varying ion dose in an oxygen gas environment, and Cu, Pt, Al and Ag thin films were deposited on the modified polymers. Wettability of the modified polymers was largely improved by the formation of hydrophilic groups due to chemical reaction between polymer surface and the oxygen gas during IAR. The change in wettability in the modified polymers was also related to the change in surface morphology and roughness. Adhesion between metal films and polymers modified by IAR was significantly improved, so that no detachment was possible in the $Scotch^{TM}$ tape test. The increase of adhesion strength between the metal film and the modified PVDF was mainly attributed to the formation of hydrophilic groups, which interacted with the metal film. In the case of the modified PTFE, the enhanced adhesion to metal film could be explained by the change in surface morphology together with the formation of hydrophilic groups. The electrical properties of the metal films on the modified polymers were also investigated.

  • PDF

p-InGaN/GaN 초격자구조에서 열처리 조건에 따른 오믹전극의 특성 (Characteristics of p-InGaN/GaN Superlattice structure of the p-GaN according to annealing conditions)

  • 장선호;김세민;이영웅;이영석;이종선;박민정;박일규;장자순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.160-160
    • /
    • 2010
  • In this work, we investigate ohmic contacts to p-type GaN using a Pt/Cu/Au metallization scheme in order to achieve low resistance and thermally stable ohmic contact on p-GaN. An ohmic contact formed by a metal electrode deposited on a highly doped InGaN/GaN superlattice sturucture on p-GaN layer. The specific contact resistance is $1.56{\times}10^{-6}{\Omega}cm^2$ for the as-deposited sample, $1.35{\times}10^{-4}{\Omega}cm^2$ for the sample annealed at $250^{\circ}C$ and $6.88{\times}10^{-3}{\Omega}cm^2$ for the sample annealed at $300^{\circ}C$.

  • PDF