• Title/Summary/Keyword: Cs-adsorption

Search Result 110, Processing Time 0.026 seconds

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Triple-layer Surface Complexation Modeling on the Adsorption of cs-137 and Sr-90 onto Kaolinite: Effect of Groundwater Ions and pH (캐올리나이트의 셰슘-137 및 스트론튬-90 흡착에 대한 삼중층 표면복합반응 모델링: 지하수 이온성분 및 pH의 영향)

  • 정찬호;박상원;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • The adsorption of Cs-137 and Sr-90 onto kaolinite in prescence of major groundwater cations (Ca2+, K+, Na+) with different concentrations was simulated by using triple-layer surface complexation model (TL-SCM). The site density (8.73 sites/nm2) of kaolinite used for TL-SCM was calculated from it's CEC and specific surface area. TL-SCM modeling results indicate that concentrations dependence on 137Cs and 90Sr adsorption onto kaolinite as a function of pH is best modeled as an outer-sphere surface reaction. This suggests that Cs+ and Sr2+ are adsorbed at the $\beta$-layer in kaolinite-water interface where the electrolytes, Nacl, KCl and CaCl2, bind. However, TL-SCM results on Sr adsorption show a discrepancy between batch data and fitting data in alkaline condition. This may be due to precipitation of SrCO3 and complexation such as SrOH+. Intrinsic reaction constants of ions obtained from model fit are as follows: Kintcs=10-2.10, KintSr=10-2.30, KintK=10-2.80, KintCa=10-3.10 and KintNa=10-3.32. The results are in the agreement with competition order among groundwater ions (K+>Ca2+>Na+) and sorption reference of nuclides (Cs-137>Sr-90) at kaolinite-water interface showed in batch test.

  • PDF

Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites

  • Lee, Joon Hyuk;Suh, Dong Hack
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3711-3716
    • /
    • 2021
  • The addition of ferric ferrocyanide (Prussian blue; PB) to adsorbents could enhance the adsorption performance of 133Cs. Toward this goal, we present a heterogeneously integrated carbonaceous material platform consisting of PB in direct contact with CO2-activated carbon filters (PB-CACF). The resulted sample retains 24.39% more PB than vice versa probed by the ultraviolet-visible spectrometer. We leverage this effect to capture 133Cs in the aqueous environment via the increase in ionic strength and micropores. We note that the amount of PB was likely to be the key factor for 133Cs adsorption compared with specific surface characteristics. The revealed adsorption capacity of PB-CACF was 21.69% higher than the bare support. The adsorption characteristics were feasible and spontaneous. Positive values of 𝜟Ho and 𝜟So show the endothermic nature and increased randomness. Based on the concept of capturing hazardous materials via hazardous materials, our work will be of interest within the relevant academia for collecting radionuclides in a sufficient manner.

A Study on the Adsorption Kinetics of 133Cs by Different Impregnations of Prussian Blue (프러시안 블루 고정화에 따른 133Cs의 흡착거동 모델링)

  • Choi, S.S.;Lee, Y.J.;Yun, K.J.;Cho, Y.J.;Lee, J.H.;Lee, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • Radionuclides, particularly radioactive cesium (Cs), are a concern of human health in some nuclear power accidents. It could lead to a high level of intracellular accumulation due to its high radioactivity and long half-life. Therefore, it is imperative to develop a method to remove Cs from wastewater. Herein, we synthesized activated carbon fibers (ACFs) doped with Prussian blue (PB) via in situ methods. We classified samples by their preparation method as either physical (PB-ACF-A) or physicochemical (PB-ACF-B) syntheses for comparison. The PB-ACF-B sample showed a significant surface loss compared to PB-ACF-A but a better 133Cs adsorption capacity. All samples fit well to Langmuir isotherms and the values of qmax were directly correlated to the amount of PB on the surface of the ACFs. Adsorption characteristics were further confirmed by the calculated free energy, enthalpy, and entropy.

Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil

  • Park, Chan Woo;Kim, Ilgook;Yoon, In-Ho;Yang, Hee-Man;Seo, Bum-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.39-49
    • /
    • 2021
  • The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic desorption solutions containing HCl or PEI removed considerable Cs from hydrobiotite. However, most desorption agents could desorb only 54% of Cs from illite because of Cs's specific adsorption to selective adsorption sites. Cs desorption from an actual soil sample containing Cs-selective clay mineral illite (< 200 ㎛) and extracted from near South Korea's Kori Nuclear Power Plant was also investigated. Considerable adsorbed 137Cs was expected to be located at Cs-selective sites when the 137Cs loading was much lower than the sample's cation exchange capacity. At this low 137Cs loading, the total Cs amount desorbed by repeated washing varied by desorption agent in the order HCl > PEI > NH4+, and the highest Cs desorption amount achieved using HCl was 83%. Unlike other desorption agents with only cation exchange capabilities, HCl can attack minerals and induce dissolution of metallic elements. HCl's ability to both alter minerals and induce H+/Cs+ ion exchange is expected to promote Cs desorption from actual soil samples.

Removal of Sr and Cs Ions in Aqueous Solution by PVC-Zeolite Composite (PVC-Zeolite 복합체에 의한 수용액 중의 Sr 이온과 Cs 이온의 제거)

  • Lee, Chang-Han;Lee, Min-Gyu;Min, Seong-Kee
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1145-1153
    • /
    • 2015
  • PVC-Zeolite composite was prepared by immobilizing zeolite with polyvinyl chloride (PVC). The prepared PVC-Zeolite beads were characterized by using X-ray diffractometer (XRD), fourier transform infrared spectrometer (FTIR), thermo gravimetric analyzer (TGA), and scanning electron microscopy (SEM). The removal properties of Sr and Cs ions from aqueous solution were investigated in batch experiment. The removal efficiencies of Sr and Cs ions by the PVC-Zeolite beads were dependent on the initial pH of solution. The removal efficiencies sharply increased at below pH 4 and was kept constant at pH 4 or more. The adsorption kinetics of Sr and Cs ions by the PVC-Zeolite beads were fitted well by the pseudo-second-order model ($r^2$>0.99) more than pseudo-first-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 39.37 mg/g and 55.87 mg/g, respectively.

Comparable Influencing Factors to evaluate the Phosphate Removal on the Batch and the fix-bed Column by Converter Slag (회분식과 연속흐름 칼럼에서 전로슬래그에 의한 인제거 영향에 미치는 요소에 관한 연구)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.565-573
    • /
    • 2015
  • The influencing factors to remove phosphate were evaluated by converter slag (CS). Experiments were performed by batch tests using different CS sizes and column test. Solutions were prepared at the different pH and concentrations. The maximum removal efficiency was obtained over 98% with the finest particle size, $CS_a$ within 2 hours in batch tests. The removal efficiency was increased in the order of decreasing size with same amount of CS for any pH of solutions. The adsorption data were well fitted to Freundlich isotherm. From the column experiment, the specific factors were revealed that the breakthrough removal capacity (BRC) $x_b/m_{cs}$, was decreased by increasing the influent concentration. The breakthrough time, tb was lasted shorter as increasing the influent concentration. The pH drop simultaneously led to lower BRC drop during the experimental hours. The relation between the breakthrough time and the BRC to influent concentration was shown in the logarithmic decrease. Results suggested that the large surface area of CS possessed a great potential for adsorptive phosphate removal. Consequently particle size and initial concentration played the major influencing factors in phosphate removal by converter slag.

Studies on the Sorption and Fixation of Cesium by Vermiculite (II)

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.97-111
    • /
    • 1974
  • The adsorption mechanism of Cs-137 in low level radioactive solution by vermiculite treated with Na ion is studied in order to investigate its effective utilization for the radioactive effluent treatment. The beneficial role of Na-vermiculite is that Na ion can induce the wider c-axis spacing in which Cs ion can be sorbed in vermiculite. Cation exchange capacity and distribution coefficient of cesium seems to be influenced by the variation of c-axis spacing of vermiculite. Comparative identification and detection with the characteristic analyses of X-ray diffraction and electron diffraction patterns, diffrential thermal analysis and electron microscopy of Na-, K- and Cs-vermiculite are studied for the phemomena of Cs adsorption by vermiculite. This importance of the utilization in terms of adsorption and fixation of cesium involving vermiculite is discussed. It is found that the Na-vermiculite is valuable outside charging material for high level radioactive liquid waste storage tank of underground to protect the pollution of the underground water.

  • PDF

Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트 물질에 의한 암모니아성 질소의 흡착 특성)

  • Lee, Chang-Han;Hyun, Sung-Su;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1261-1274
    • /
    • 2020
  • The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).