• Title/Summary/Keyword: Crystallographic orientation

Search Result 201, Processing Time 0.028 seconds

Effect of Bonding Misfit on Single Crystallization of Transient Liquid Phase Bonded Joints of Ni Base Single Crystal Superalloy (단결정 Ni기 초내열합금 액상확산접합부 단결정화에 미치는 접합방위차의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.93-98
    • /
    • 2002
  • The effect of bonding misfit on single crystallization of transient liquid phase (TLP) bonded joints of single crystal superalloy CMSX-2 was investigated using MBF-80 insert metal. The bonding misfit was defined by (100) twist angle (rotating angle) at bonded interface. TLP bonding of specimens was carried out at 1523K for 1.8ks in vacuum. The post-bond heat treatment consisted of the solution and sequential two step aging treatment was conducted in the Ar atmosphere. The crystallographic orientation analysis across the TLP bonded joints was conducted three dimensionally using the electron back scattering pattern (EBSP) method. EBSP analyses f3r the bonded and post bonded heat treated specimens were conducted. All bonded joints had misorientation centering around the bonded interface for as-bonded and post-bond heat treated specimens with rotating angle. The average misorientation angle between both solid phases in bonded interlayer was almost identical to the rotating angle at bonded interface. HRTEM observation revealed that the atom arrangement of both solid phases in bonded interlayer was quite different across the bonded interface. It followed that grain boundary was formed in bonded interface. It was confirmed that epitaxial growth of the solid phase occurred from the base metal substrates during TLP bonding and single crystallization could not be achieved in joints with rotating angle.

The Effect of Si Underlayer on the Magnetic Properties and Crystallographic Orientatation of CoCr(Mo) Thin Film (CoCr(Mo) 박막의 자기적 특성 및 미세구조에 미치는 Si 하지층의 영향)

  • 이호섭;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.256-262
    • /
    • 1999
  • Sputter deposited CoCr(Mo)/Si film were studied with emphasis on the correlation between magnetic properties and crystallographic orientation. The perpendicular coercivities of CoCr films decreased with Si underlayer thickness, whereas those of CoCrMo films increased with Si underlayer thickness. It has been explained that additions of the larger atomic radius Mo atoms in CoCr films impedes crystal growth resulting in a decrease in grain size, thus this small grain size may induce high perpendicular coercivity. The c-axis alignment of CoCrMo film was improved due to addition of 2at.%Mo. It means CoCrMo layer grow self-epitaxial directly from orientation and structure of Si underlayer when the main layer grow on underlayer.

  • PDF

A Study of the Crystallographic Characteristic of ZnO Thin Film Grown on ZnO Buffer Layer (ZnO Buffer Layer에 의한 ZnO 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;이정석;신성권;김경환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.214-217
    • /
    • 2003
  • In this study, we prepared ZnO thin film on $SiO_2$/Si substrate by FTS (Facing Targets Sputtering) apparatus which can reduce damage on the thin film because the bombardment of high-energy Particles such as ${\gamma}$-electron can be restrained. And, properties of thin filnl grown with ZnO buffer-layer which can be suppress initial growth layer was investigated. The crystalline and the c-axis preferred orientation of ZnO thin film was also investigated by XRD. As a result, we noticed that the ZnO thin film has a good crystallographic characteristic at thickness of ZnO buffer layer 10, 20 nm and working pressure 1 mTorr.

High-Strain Rate Tensile Behavior of Pure Aluminum Single and Multi-Crystalline Materials with a Tensile Split Hopkinson Bar (인장형 홉킨슨 바 장치를 이용한 알루미늄 단결정 및 멀티결정재의 동적 실험)

  • Ha, Sangyul;Jang, Jin Hee;Yoon, Hyo Jun;Kim, KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, we modified the conventional tensile split Hopkinson bar(TSHB) apparatus typically used for the high strength steel to evaluate the tensile deformation behavior of soft metallic sheet materials under high strain rates. Stress-strain curves of high purity single and multi-crystalline materials were obtained using this experimental procedure. Grain morphology and initial crystallographic orientation were characterized by EBSD(Electron Backscattered Diffraction) method measured in a FE-SEM(Field emission-scanning electron microscopy). The fractured surfaces were observed by using optical microscopy. The relationship between plastic deformation of aluminum crystalline materials under high-strain rates and the initial microstructure and the crystallographic orientations has been addressed.

Coexistence of quasi-1D ($7{\times}7$) and ($5{\times}5$) phases on vicinal Si(557) surfaces

  • Kim, Min-Kook;Oh, Dong-Hwa;Baik, Jae-Yoon;Jeon, Cheol-Ho;Park, Chong-Yun;Ahn, Joung-Real
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.361-361
    • /
    • 2010
  • The separated quasi-one-dimensional ($7{\times}7$) and ($5{\times}5$) phases on vicinal Si(557) surfaces were successfully realized by changing the crystallographic orientation and thermal treatment conditions. A small change in the crystallographic orientation of the Si(557) surface stabilized the quasi-one-dimensional ($5{\times}5$) phase of a (111) facet on vicinal Si(557) surfaces and made it coexist with a quasi-one-dimensional ($7{\times}7$) phase after an optimal thermal treatment, whereas only the quasi-one-dimensional ($7{\times}7$) phase was stable on the Si(557) surface. Interestingly, this causes the (111) terraces with different widths (L) to prefer only one of the $5{\times}5$ (L=12) and $7{\times}7$ (L=9) phases resulting in long-range order of both phases along the step edge direction, which was observed by scanning tunneling microscopy (STM) and was supported by first principle calculations. In contrast, the quasi-one-dimensional ($5{\times}5$ and ($7{\times}7$) phases were arranged randomly across the step edge direction. The change of surface morphology of vicinal Si(557) surfaces will be discussed with STM images and theoretical calculations by changing crystallographic cutting angles and thermal treatment conditions.

  • PDF

Effects of Oxygen Flow Ratio on the Crystallographic Orientation of NiO Thin Films Deposited by RE Magnetron Sputtering (RF 마그네트론 스퍼터링에 의한 NiO 박막 증착시 산소 유량비가 박막의 결정 배향성에 미치는 영향)

  • 류현욱;최광표;노효섭;박용주;박진성
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.106-110
    • /
    • 2004
  • Nickel oxide (NiO) thin films were prepared on Si(100) substrates at room temperature by RF magnetron sputtering using a NiO target. The effects of oxygen flow ratio for the plasma gas on the preferred orientation and surface morphology of the NiO films were investigated. Highly crystalline NiO film with (100) orientation was obtained when it was deposited in pure Ar gas. For NiO film deposited in pure O$_2$ gas, on the other hand, the orientation of the film changed from (100) to (111) and its deposition rate decreased. The origin of the preferred orientation of the films was discussed. NiO films also showed different surface morphologies and roughnesses with the oxygen flow ratio.

Crystallographic Orientation Dependence of Sputtering Rate in Sendust Targets

  • Kim, Myong-Ryeong;Hum Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.167-171
    • /
    • 1995
  • The orientation dependence of sputtering rate in the sendust polysrystalline targets was studied, It was fount from the present work that the erosion process is not uniform from one grain to another even within a target because of its polysrystalline nature showing many different orientation of grains. The grains oriented to promote efficient erosion were characterized by the close-packed planes which have large interplanar spacing and strong binding energy, The characteristic line patterns appeared on as-sputter target surface are discussed in terms of symmetry of crystllographic planes.

  • PDF

Effect of Carbon on Microstructure and Texture in Low Carbon Steels (저탄소강의 미세조직과 집합조직에 대한 탄소의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.2
    • /
    • pp.79-89
    • /
    • 2014
  • The effect of carbon on the microstructure and texture of low carbon steels was investigated in a series of 1.6 Mn-0.3Cr-0.2Mo-0.001B steels with carbon ranging from 0.021 to 0.048%. Intensity of {111} orientation increased with decreasing the carbon content, resulting in the increase in $r_m$ value. The highest $r_m$ value of 1.30 was obtained in 0.021%C steel annealed at $820{\sim}850^{\circ}C$ according to the typical galvannealing heat cycle. Martensite volume fraction was not substantially affected by the annealing temperature. It was found that the fine and uniformly distributed martensite particles which were present in amounts of about 5% volume fraction were desirable for the highest $r_m$ value. The other factor affecting the high $r_m$ value was the preferred epitaxial growth of retained ferrite with {111} orientation into austenite during cooling.

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

A Study on the Fabrication and Structural Evaluation of AlN Thin Films

  • Han, Seung-Oh;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • AlN thin films were deposited by using a two-facing-targets type sputtering system (TFTS), and their deposition characteristics, microstructure and texture were investigated. Total gas pressure was kept constant at 0.4 Pa and the partial pressures of nitrogen, $PN_2$ (($N_2$ pressure)/($Ar+N_2$ pressure)) varied from 0 to 0.4 Pa. The texture of the film cross-sections and surface morphology were observed by field emission scanning electron microscope (FE-SEM). The crystallographic orientation of the films were analyzed by X-ray diffraction (XRD). Deposition of AlN film depends on $N_2$ partial pressure. The best preferred oriented AlN thin films can be deposited at a nitrogen partial pressure of $PN_2$ = 0.52. As-deposited AlN films show preferred orientation and columnar structure, and the grAlN size of AlN films increases with increasing sputtering current.