• Title/Summary/Keyword: Crystallization rate

Search Result 316, Processing Time 0.031 seconds

Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization (탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성)

  • Lee, Seung-Woo;Chae, Soochun;Bang, Jun-Hwan
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 ℃ after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 ℃ to 10 ℃, and the second injection was aimed at 10 ℃ for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 ℃ to 2 ℃. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.

Dissolution of Crystal Forms of Cefotaxime Sodium (세포탁심나트륨의 결정형의 용출)

  • Sohn, Young-Taek;Kim, Hee-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.81-85
    • /
    • 1998
  • Three polymorphic modifications and two pseudopolymorphic modifications of cefotaxime sodium were obtained by crystallization from different organic solvents. The isolated crystal forms were characterized by UV spectrophotometry, DSC, TGA and X-ray crystallography. Crystal forms of cefotaxime sodium were also compared by dissolution rate. The dissolution rate of form 1 was the highest, followed by form 2, form 4, form 6, form 5 and form 3. Among these polymorphic modifications the dissolution rate of form 3 and form 5 was much slower than that of cefotaxime sodium on the market. All forms showed no change after 2-month storage test in the silica gel desiccator. But after the storage of 2-month at 95% relative humidity condition, all forms were deliquesced by hygroscopic property except form 1 that showed the highest dissolution rate. At 52% relative humidity condition, form 1, form 2 and form 6 had no evidence of phase transformation, but form 3, form 4 and form 5 were also deliquesced.

  • PDF

effect of Heating Rate on the Mechanical Properties in the Crystallization of $Li_2O$.$2SiO_2$ Glass ($Li_2O$.$2SiO_2$유리의 결정화에서 승온속도가 기계적 특성에 미치는 영향)

  • 최병현;고경현;안재환;지응업
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.809-815
    • /
    • 1996
  • When Li2O.2SiO2 glass was crystallized between the temperature of maximum nucleation and the temperature of maximum crystal growth it was found that the control of heating rate had serious effect on the crystallinity and microstructure and the greatly changed physical properties. Density and elastic modulus tends to increase but thermal expansion coefficient decreased with increased crystallinity. When heating rate between the tempe-rature of maximum nucleation and the temperature of maximum crystal growth was 10~5$0^{\circ}C$/hr. crystallinity was increased to result in the increment of strength. When nuclation was done at 44$0^{\circ}C$ for 5 hours and the temperature of crystal growth was held at 575$^{\circ}C$ strength was increased until crystallinity reached 65% and strength was decreased with higher crystallinity. These phenomena could be explained that even for the same crystallinity different heat rates resulted in different number and size of cracks.

  • PDF

Plating Rate of Electroless Nikel-Copper-Phosphorus Plating and Change in Microhardness and Corrosion Rate depending on. Heat treatment (무전해 니켈-구리-인 도금의 도금속도와 열처리에 따른 경도 및 내삭성 변화)

  • 오이식;황용길
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.208-217
    • /
    • 1990
  • Electroless Ni-Cu-P plating was performed was performed to investigate for plating and changes in microhardness and corrosion rate of of electroless deposits depending on heat treatment. The activation energy for $75~85^{\circ}C$ were calculated to be 66.7KJ/mole. Plating rate increased to 34% with addition of 200ppm of NaF and 0.8ppm of thiourea to the bath. The highest hardness value was obtained by heat treatment deposits layer at$ 400^{\circ}C$, 1 hour. The increase in hardness of deposits by heating was confirmed to be associated with crystallization of the amorphous deposits. Corrosion resistance of deposir layer, which had been heated up to $300^{\circ}C$, was found to be exellent when immersed in 1N-H2SO4 solution, Change of the corrosion resistance seems to have some important bearing on content of amorpous, Ni3P and Cu3P.

  • PDF

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

Determination of the Nucleation Rate Curve for Lead Titanate in the PbO-TiO$_2$-B$_2$O$_3$-BaO by Diffferential Thermal Analysis (PbO-TiO$_2$-B$_2$O$_3$-BaO 계 유리에서 PbTiO$_3$ 결정의 핵생성 곡선 결정을 위한 열시차분석법의 응용)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.640-646
    • /
    • 1998
  • Nucleation and crystallzation of a quaternary glass system for lead titanate glass-ceramics were in-vestigated using DTA(differential thermal analysis ) with variation of nucleation temperature and crystal growth time. Glass samples containing 60mol% of PbO-{{{{ { TiO}_{2 } }} were prepared from melts by the conventional normal cooling method in a cylindrical brass mould. The glass sample was nucleated between 40$0^{\circ}C$ and 50$0^{\circ}C$ for a given time and showed the maximum nucleation rate at 46$0^{\circ}C$ The DTA crystallization peak temperature decreased with increasing nucleating time and decreasing heating rate during DTA runs which indicated an increase of the number of nuclei produced in the system.

  • PDF

Relationship of Magnesium Source and MAP Crystallization Efficiency (마그네슘 공급원과 MAP 결정화 효율과의 관계)

  • Ahn, Johwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • Batch experiments were conducted to find out the effects of various types of magnesium compounds on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization. The phosphorus recovery from the centrate of anaerobic digested sludge was performed using magnesium chloride, magnesium hydroxide and magnesium oxide under different pH (7.5, 8.0 and 8.5) and Mg/P molar ratio (1.0, 1.5, 2.0, 2.5) conditions. The phosphorus recovery rate increased with increasing pH and Mg/P molar ratio in all magnesium compounds. At pH 7.5, magnesium oxide showed the highest phosphorus recovery rate, followed by magnesium hydroxide and magnesium chloride. However, at pH 8.5, more than 90% of phosphorus recovery rate was obtained in all Mg/p molar ratios. Thus, it is expected that magnesium hydroxide and magnesium oxide are able to replace magnesium chloride as a magnesium source in terms of phosphorus recovery efficiency and cost.

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

Effect of Reaction Conditions on Crystals in the Reaction Crystallization of Lanthanum Oxalate (란타늄 옥살레이트 반응성 결정화에서 반응조건에 따른 결정입자 연구)

  • Kim, Hong-Ju;Kim, Woon-Soo;Kim, Woo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1004-1010
    • /
    • 1998
  • Effects of reaction conditions such as power input and feeding time and feeding mode of reactants on the reaction crystallization of lanthanum oxalate in semi-batch reactor were investigated experimentally. Even though the crystal size distribution of lanthanum oxalate was always monomodal, its mean crystal size was significantly varied with the reaction conditions. As the power input and reactant feeding rate increased, the mean crystal size was reduced and the relative induction time was prolonged. The mean crystal size produced in oxalic acid feeding mode was smaller than that in lanthanum chloride feeding mode, but the trend of the relative induction time with the feeding mode was reverse to that of the mean crystal size. The crystal morphology of lanthanum oxalate, which was produced within the ranges of the reaction conditions in our experiment, was maintained as a needle shape.

  • PDF

A Study on Crystallization of Linear Low Density Polyethylene Particles from Decalin Solution (Decalin 용액에서 선형 저밀도 폴리에틸렌 입자의 결정화에 관한 연구)

  • Park, Keun-Ho;Jang, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • We fabricated linear low density polyethylene (LLDPE) particles via crystallization from decalin solution. In the thermally induced phase separation (TIPS) process, formation of particles occurred during controlled cooling of LLDPE/decalin solution. Despite an increase of nucleation and growth rate for crystals at higher polymer concentrations, which generally results in larger particles than at lower concentration, the average diameter of LLDPE particles increased as LLDPE was more concentrated in decalin solution. In the FE-SEM micrographs, the observed particles from various concentrations were smaller than 10 ${\mu}m$, showing spherical morphologies. In addition to its effect on size, concentration of LLDPE had an broadening effect on the particle size distribution.