DOI QR코드

DOI QR Code

Relationship of Magnesium Source and MAP Crystallization Efficiency

마그네슘 공급원과 MAP 결정화 효율과의 관계

  • Received : 2022.02.24
  • Accepted : 2022.03.21
  • Published : 2022.03.30

Abstract

Batch experiments were conducted to find out the effects of various types of magnesium compounds on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization. The phosphorus recovery from the centrate of anaerobic digested sludge was performed using magnesium chloride, magnesium hydroxide and magnesium oxide under different pH (7.5, 8.0 and 8.5) and Mg/P molar ratio (1.0, 1.5, 2.0, 2.5) conditions. The phosphorus recovery rate increased with increasing pH and Mg/P molar ratio in all magnesium compounds. At pH 7.5, magnesium oxide showed the highest phosphorus recovery rate, followed by magnesium hydroxide and magnesium chloride. However, at pH 8.5, more than 90% of phosphorus recovery rate was obtained in all Mg/p molar ratios. Thus, it is expected that magnesium hydroxide and magnesium oxide are able to replace magnesium chloride as a magnesium source in terms of phosphorus recovery efficiency and cost.

혐기성 소화 슬러지 탈리여액을 대상으로 마그네슘 공급원이 인산암모늄마그네슘(MAP) 결정화에 의한 인산염 회수에 어떠한 영향을 미치는지 알아보기 위해 회분식 실험을 실시하였다. 마그네슘 공급원으로 염화마그네슘, 수산화마그네슘 그리고 산화마그네슘을 사용하여 다양한 pH (7.5, 8.0 및 8.5) 조건 및 Mg/P 몰 비율(1.0, 1.5, 2.0 및 2.5)에서 인산염 회수를 실시하였다. 그 결과, 마그네슘 공급원과 관계없이 pH 조건과 Mg/P 몰 비율이 높을수록 인산염 회수율이 증가하였다. pH가 가장 낮은 7.5의 조건에서는 Mg/P 몰 비율이 증가할수록 인산염 회수율이 증가하였는데 산화마그네슘, 수산화마그네슘, 염화마그네슘의 순으로 높았다. 그러나 pH가 가장 높은 8.5의 조건에서는 Mg/P 몰 비율과 관계없이 모든 마그네슘 공급원에서 90% 이상의 높은 인 회수율을 얻을 수 있었다. 따라서 낮은 pH 조건에서도 높은 인산염 회수율을 얻을 수 있었던 수산화마그네슘과 산화마그네슘이 경제적인 측면뿐만 아니라 효율적인 측면에서도 염화마그네슘을 대체할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 중소기업기술혁신개발사업의 연구비 지원으로 수행되었습니다.

References

  1. Kim, D., "Pre-treatment technology of wastewater sludge foe enhanced biogas production in anaerobic digestion", Clean Technology, 19, pp. 355~369. (2013). https://doi.org/10.7464/KSCT.2013.19.4.355
  2. Liu, J., Deng, S., Qiu, B., Shang, Y., Tian, J., Bashir, A. and Cheng, X., "Comparison of pretreatment methods for phosphorus release from waste activated sludge", Chemical Engineering Journal, 368, pp. 754~763. (2019). https://doi.org/10.1016/j.cej.2019.02.205
  3. Cordell, D., Drangert, J. and White, S., "The story of phosphorus: global food security and food for thought", Global Environmental Change, 19, pp. 39~44. (2009).
  4. Lee, M. and Kim, D., "Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method", Jouranl of Korean Society of Water and Wastewater, 32, pp. 131~143. (2018). https://doi.org/10.11001/jksww.2018.32.2.131
  5. Siciliano, A., Limonti, C., Curcio, G. and Molinari, R., "Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater", Sustainability, 12, 7538. (2020). https://doi.org/10.3390/su12187538
  6. Zang, C., Guisasola, A. and Baeza, J., "A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal enhanced biological phosphorus removal", Water Research, 212, pp. 1~15. (2022).
  7. Ryu, H., Lim, D., Kim, S., Baek, U., Chung, E., Kim, K. and Lee, J., "Struvite precipitation for sustainable recovery of nitrogen and phosphorus from anaerobic digestion effluents of swine manure", Sustainability, 12, 8574. (2020). https://doi.org/10.3390/su12208574
  8. Kim, D., Min, K., L ee, K, Yu, M. and Park, Y., "Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater", Environmental Engineering Research, 22, pp. 12~18. (2017). https://doi.org/10.4491/eer.2016.037
  9. American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA, and WEF), "Standard methods for the examination of water and wastewater", 17th ed., APHA, AWWA, and WEF, USA. (1989).
  10. Zoltek, J., "Phosphorus removal by orthophosphate nucleation", Journal Water Pollution Control Federation, 46, pp. 2498~2520. (1974).
  11. Snoeyink, V. and Jenkins, D., "Water chemistry", 1st ed., John Willey & Sons, USA. (1980).
  12. Dockhorn, T., "About the economy of phosphorus recovery", In International Conference on Nutrient Recovery from Wastewater Streams, IWA, UK. (2009).
  13. Wang, J., Ye, X., Zhang, Z., Ye, Z. and Chen, S., "Selection of cost-effective magnesium sources for fluidized struvite crystallization", Journal of Environmental Sciences, 70, pp 144~153. (2018). https://doi.org/10.1016/j.jes.2017.11.029
  14. Stolzenburg, P., Capdevoelle, A., Teychene, S. and Biscans, B., "Struvite precipitation with MgO as a precusor: Application to wastewater treatment", Chemical Engineering Science, 133, pp. 9~15. (2015). https://doi.org/10.1016/j.ces.2015.03.008
  15. Chauhan, C., Vyas, P. and Joshi, M., "Growth and characterization of struvite-k crystals", Crystal Research and Technology, 46, pp. 187~194. (2011). https://doi.org/10.1002/crat.201000587