DOI QR코드

DOI QR Code

Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization

탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성

  • Lee, Seung-Woo (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chae, Soochun (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bang, Jun-Hwan (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승우 (한국지질자원연구원 광물자원연구본부 탄소광물화사업단) ;
  • 채수천 (한국지질자원연구원 광물자원연구본부 탄소광물화사업단) ;
  • 방준환 (한국지질자원연구원 광물자원연구본부 탄소광물화사업단)
  • Received : 2020.06.15
  • Accepted : 2020.08.12
  • Published : 2020.08.28

Abstract

Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 ℃ after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 ℃ to 10 ℃, and the second injection was aimed at 10 ℃ for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 ℃ to 2 ℃. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.

나트륨 농축수로부터 나트륨 화합물을 합성하기 위하여 탄산화(step I) 및 저온 결정화(step II)를 수행하였다. 탄산화 과정에서는 반응 온도를 조절 변수로 이용하여 이를 통해 이산화탄소(95 wt.%)의 용해도 및 pH를 변화시켰다. 저온 결정화 과정은 탄산화 과정 후 2 ℃로 유지한 상태에서 진행하였다. 이산화탄소의 주입은 용액 내 탄산 이온의 안정적 생산과 포화 용해도를 고려하여 두 차례 주입하였다. 첫 번째 주입은 이산화탄소 주입량 증가 및 안정적인 탄산 이온 생성을 목적으로 반응 온도를 35 ℃에서 10 ℃로 변화시켜 CO2의 용해도를 변화하고자 하였고, 두 번째 주입은 NaCl 용액 혼합과 동시에 탄산화를 통한 나트륨 화합물의 핵생성을 유도할 목적으로 수행하였다. 또한 저온 결정화에서는 pH 조절 및 반응 온도 변화(10 ℃에서 2 ℃)를 통해 탄산화 속도를 느리게 유도함으로써 나트륨 화합물의 결정 성장을 유도할 수 있었다. 본 연구에서는 NaOH 농도에 대한 효과를 검토하였으며 2M NaOH를 사용한 경우에 나트룸 화합물의 순도가 증가하였다. 또한, 합성 한 나트륨 화합물은 대부분 rod 형상을 갖는 물질들로 X-선 회절 분석을 통해 중탄산나트륨 또는 수화물(monohydrate) 형태의 탄산나트륨임을 확인하였다.

Keywords

References

  1. Byong-Ho, K., 1984 : Ion-Exchange capacity of porous glasses and micro structure, Journal of the Korean Ceramic Society, 21(2), pp.181-192.
  2. Do-Hwan, K., Yung-Jin, K., Hee-Jong, S., et al., 2018 : Effect o f corrosive w ater q ual ity c ontrol and c orrosion index monitoring in pilot scale pipeline simulator, Journal of Korean Society of Water and Wastewater, 32(2), pp. 183-192. https://doi.org/10.11001/jksww.2018.32.2.183
  3. Sung Jin, P., Lae-Hyun, K., and Hun Yong, S., 2012 : Production of hydrogen by thermochemical transition of lauan sawdust in steam reforming gasification, Korean Chemical Engineering Research, 50(5), pp.908-912. https://doi.org/10.9713/kcer.2012.50.5.908
  4. Wikipedia, sodium hydrogen carbonate, https://ko.wikipedia.org/wiki/sodium hyrogen carbonate, March 12, 2020.
  5. Na-Jung, K., Gwi-Jung, H., Ha-Yun, K., et al., 2015 : Quality characteristics of soy sauce braised shiraegi with baking powder, Koren Journal of Food and Cookery Science, 31(5), pp.676-685. https://doi.org/10.9724/kfcs.2015.31.5.676
  6. Young-Man, L., Yeon-Ho, K., Wookeun, B., et al., 2009 : Removal effect of acid gases by reactant mixer and distributor of bag filter in dry scrubbing with $NaHCO_3$, Journal of Korean Society for Atmospheric Environment, 25(5), pp.402-409. https://doi.org/10.5572/KOSAE.2009.25.5.402
  7. http://amenews.kr/m/view, January 7, 2020.
  8. Steinhauser, G., 2008 : Cleaner production in the Solvay Process : general strategies and recent developments, Journal of Cleaner Production, 16(7), pp.833-841. https://doi.org/10.1016/j.jclepro.2007.04.005
  9. Choon-Ki, N., and Hyunju, P., 2014 : Recycling of waste bittern from salt farm (I): Recovery of magnesium, Applied Chemistry for Engineering, 27(4), pp.427-432. https://doi.org/10.14478/ace.2016.1058
  10. Spiegler, K.S., and Laird, A.D.K., 1980 : Principles of Desalination, pp.562-622, 2nd Editon, Academic Press, New York.
  11. Mirjafari, P., K. Asghari and N. Mahinpey, 2007 : Investigation the application of enzyme carbonic anhydrase for $CO_2$ sequestration purposes, Industrial & Engineering Chemistry Research, 46, pp.921-926. https://doi.org/10.1021/ie060287u
  12. Chiang, P.C., and Pan, S.Y., 2017 : Carbon dioxide mineralization and utilization, pp.83-89, Springer, Singapore.
  13. Mullin, J.W., 2001 : Crystallization, pp.201-205. Fourth Edition, Elsevier, New York.
  14. Rumble, J.R., 2020 : Handbook of Chemistry and Physics. 100th Edition, CRC Press.
  15. Dodds, W.S., Stutzman, L.F., and Sollami, B.J., 1956 : Carbon dioxide solubility in water. Industrial & Engineering Chemistry Chemical & Engineering Data Series, 1(1), pp. 92-95. https://doi.org/10.1021/i460001a018
  16. Sadhwani, J.J., Veza, J.M., and Santana, C., 2005 : Case studies on environmental impact of seawater desalination, Desalination, 185, pp.1-8. https://doi.org/10.1016/j.desal.2005.02.072