• Title/Summary/Keyword: Crystallization front

Search Result 7, Processing Time 0.022 seconds

Fabrication of polycrystalline Si films by rapid thermal annealing of amorphous Si film using a poly-Si seed layer grown by vapor-induced crystallization

  • Yang, Yong-Ho;An, Gyeong-Min;Gang, Seung-Mo;An, Byeong-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • We have developed a novel crystallization process, where the crystallization temperature is lowered compared to the conventional RTA process and the metal contamination is lowered compared to the conventional VIC process. A very-thin a-Si film was deposited and crystallized at $550^{\circ}C$ for 3 h by the VIC process and then a thick a-Si film was deposited and crystallized by the RTA process at $680^{\circ}C$ for 5 min using the VIC poly-Si layer as a crystallization seed layer. The RTA crystallized temperature could be lowered up to $50^{\circ}C$, compared to RTA process alone. The poly-Si film appeared a needle-like growth front and relatively well-arranged (111) orientation. In addition, the Ni concentration in the poly-Si film was lowered to $3{\times}10^{17}\;cm^{-3}$ and that at the poly-Si/$SiO_2$ interface was lowered to $5{\times}10^{19}\;cm^{-3}$. The reduction in metal contamination could be greatly helpful to achieve a low leakage current in poly-Si TFT, which is the critical parameter for commercialization of AMOLED.

  • PDF

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Laser patterning process for a-Si:H single junction module fabrication (레이저 가공에 의한 비정질 실리콘 박막 태양전지 모듈 제조)

  • Lee, Hae-Seok;Eo, Young-Joo;Lee, Heon-Min;Lee, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.281-284
    • /
    • 2007
  • Recently, we have developed p-i-n a-Si:H single junction thin film solar cells with RF (13.56MHz) plasma enhanced chemical vapor deposition (PECVD) system, and also successfully fabricated the mini modules ($>300cm^2$), using the laser patterning technique to form an integrated series connection. The efficiency of a mini module was 7.4% ($Area=305cm^2$, Isc=0.25A, Voc=14.74V, FF=62%). To fabricate large area modules, it is important to optimise the integrated series connection, without damaging the cell. We have newly installed the laser patterning equipment that consists of two different lasers, $SHG-YVO_4$ (${\lambda}=0.532{\mu}m$) and YAG (${\lambda}=1.064{\mu}m$). The mini-modules are formed through several scribed lines such as pattern-l (front TCO), pattern-2 (PV layers) and pattern-3 (BR/back contact). However, in the case of pattern-3, a high-energy part of laser shot damaged the textured surface of the front TCO, so that the resistance between the each cells decreases due to an incomplete isolation. In this study, the re-deposition of SnOx from the front TCO, Zn (BR layer) and Al (back contact) on the sidewalls of pattern-3 scribed lines was observed. Moreover, re-crystallization of a-Si:H layers due to thermal damage by laser patterning was evaluated. These cause an increase of a leakage current, result in a low efficiency of module. To optimize a-Si:H single junction thin film modules, a laser beam profile was changed, and its effect on isolation of scribed lines is discussed in this paper.

  • PDF

Correlation defects of macrostructure with morphology of BGO crystals grown by low thermal gradient Czochralski technique

  • Shlegel, V.N.;Shubin, Yu.V.;Ivannikova, N.V.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • In the present work we consider morphological structure of the faces of BGO crystals grown by Czochralski technique under the conditions of low temperature gradient (0.1~1 deg/cm) and interconnection between the morphological features of faces at the crystallization front and the formation of defects within the crystal volume. It is demonstrated that the {112} faces retain stability while the growing surface deviates from the crystallographic (112) plane up to 1 degree. At larger deviation, the region of the stable facet growth passes either to the region of macrosteps or to the region of normal growth. depending on conditions.

Effect of Ion Mass Doping on Metal-Induced Lateral Crystallization (이온 질량 주입이 금속 유도 측면 결정화에 미치는 영향)

  • Kim, Tae-Gyeong;Kim, Gi-Beom;Yun, Yeo-Geon;Kim, Chang-Hun;Lee, Byeong-Il;Ju, Seung-Gi
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.25-30
    • /
    • 2000
  • Ion mass doping method has been implemented for the fabrication of large area electronic devices such as TFT-LCD. In this work, the effect of ion mass doping on the velocity and the behavior of MILC was investigated. When amorphous silicon was either doped or bombarded by accelerated ions, MILC velocity was reduced by over 50% and the front edge of MILC became coarse. In order to analyze the dependence of silicon film's properties on ion mass doping, ultraviolet reflectance and sulfate roughness were investigated. Both the velocity and the behavior of MILC were found to be related with the increase of surface roughness by ion bombardment.

  • PDF

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.