• Title/Summary/Keyword: Crystallization behavior

Search Result 362, Processing Time 0.032 seconds

The Study for the Crystallization Behavior of Conventionally Heated and Microwave Heat-treated Inorganic Polymers (재래식 열과 마이크로파 에너지에 의해 열처리된 무기고분자의 결정화 거동에 관한 연구)

  • 박성수;차무경;류봉기;신학기;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.935-940
    • /
    • 1997
  • This study investigated the crystallization behavior in PbO-ZnO-B2O3-TiO2 system sealing glass, inorganic polymer heat-treated by conventional heat and microwave energy. After determining heat-treated temperature for crystallization and characteristic points by DTA analysis, samples were heat-treated in a classical electric furnace and a home-style microwave oven (LG Electronic Co., 2.45 GHz, 700 W). A microwave heat-treated sample had the growth of PbTiO3 crystal at 45$0^{\circ}C$, 2$0^{\circ}C$ lower than that of a conventionally heat-treated sample. Also, it had crystallinity about 20% higher than the conventionally heat-treated sample. At 49$0^{\circ}C$, the size of PbTiO3 crystal in the conventionally heat-treated sample was larger than that in the microwave heat-treated sample due to longer heat-treated time.

  • PDF

Synthesis of Two-Component Titanate Powders Using Ethylene Glycol Solution (에틸렌글리콜 용액을 이용한 2성분계 Titanate 분말의 합성)

  • 이상진;권명도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.346-351
    • /
    • 2002
  • Pure and fine, two-component titanate powders (barium titanate, calcium titanate etc.) were synthesized by an ethylene glycol method. Titanium isopropoxide and other metal ionic salts were dissolved in liquid-type ethylene glycol without any precipitation. In non-aqueous system, the amount of ethylene glycol affected the solubility and homogeneity of metal cation sources in the solution. At the optimum amount of the polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. Most of the synthesized powders had sub-micron or nano-size primary particles after calcination and the agglomerated calcined powders were easily ground by ball milling process. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after ball milling. The crystallization behavior and the microstructures of the calcined powders were affected on the ethylene glycol content.

Miscibility of TPU(PCL diol)/PCL Blend and its Effect on PCL Crystallinity

  • Ajili Shadi Hassan;Ebrahimi Nadereh Golshan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.371-372
    • /
    • 2006
  • Poly(${\varepsilon}-caprolactone$) (PCL) is a highly crystalline polymer that is miscible with several amorphous polymers including chlorinated polyether, poly(vinylchloride), poly(hydroxyether) and Bisphenol A polycarbonate. The crystallization behavior of miscible blend of amorphous/crystalline polymers has widely been studied. Generally a depression of the crystallization ability has been found with addition of amorphous component because of the reduction of chain mobility, the change of free energy of nucleation as a result of a specific interaction, and so on [1]. In this work, for the first time, the blend of PCL and copolymer of polyurethane containing polycaprolactone as a soft segment is considered. The structural similarity of TPU soft segment with PCL affects on formation of the miscible component and crystallization behavior of PCL in the blend. This has been studied using differential scanning calorimetry (DSC) and Wide-angle X-ray Scattering (WAXS).

  • PDF

Crystallization Behavior of ITO Thin Films with and without External Heating during RF-Magnetron Sputtering

  • Park, Ju-O;Lee, Joon-Hyung;Kim, Jeong-Joo;Cho, Sang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.822-825
    • /
    • 2003
  • Indium tin oxide (ITO) thin films were deposited by RF-magnetron sputtering method and the crystallization behavior of the films with no external heating as a function of deposition time was examined. X-ray diffraction results indicated an amorphous state of the film when the deposition time is short about 10 min. When the deposition time was increased over 20 min development of crystallization of the films is observed.

  • PDF

Preparation and Properties of in situ Polymerized Poly(ethylene terephthalate)/Fumed Silica Nanocomposites

  • Hahm, Wan-Gyu;Myung, Hee-Soo;Im, Seung-Soon
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 2004
  • We have prepared poly(ethylene terephthalate) (PET) nanocomposites filled with two different types of fumed silicas, hydrophilic (FS) and hydrophobic (MFS) silicas of 7-nm diameter, by in situ polymerization. We then investigated the morphological changes, rheological properties, crystallization behavior, and mechanical properties of the PET nanocomposites. Transmission electron microscopy (TEM) images indicate that the dispersibility of the fumed silica was improved effectively by in situ polymerization; in particular, MFS had better dispersibility than FS on the non-polar PET polymer. The crystallization behavior of the nanocomposites revealed a peculiar tendency: all the fillers acted as retarding agents for the crystallization of the PET nanocomposites. The incorporation of fumed silicas increased the intrinsic viscosities (IV) of the PET matrix, and the strong particleparticle interactions of the filler led to an increased melt viscosity. Additionally, the mechanical properties, toughness, and modules of the nano-composites all increased, even at low filler content.

Crystallization Characteristics of Metallocene Low Density Polyethylene (메탈로센 선형 저밀도 폴티에틸렌의 결정화 거동)

  • 김경룡;한정우;조봉규;강호종
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.833-839
    • /
    • 2001
  • The crystallization characteristics of metallocene linear low density polyethylene was investigated by small angle light scattering and comparison was made with Ziegler-Natta linear low density polyethylene. The special efforts were made to find out the effects of branching number, length of branching and co-monomer content of m-LLDPE on the crystallization behavior of m-LLDPE. It was found that m-LLDPE has longer induction time to start crystallization from the amorphous state than that of conventional LLDPE with similar branching number, but the rate of crystallization seems not change much in both LLDPEs. Lowering of branching number in m-LLDPE resulted in both increasing of rate of crystallization and reducing induction time to crystallize. In general, the maximum size of spherulites of m-LLDPE is bigger than that of conventional LLDPE.

  • PDF

Crystallization Behavior of Al-Ni-Y Amorphous Alloys

  • Na, Min Young;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.127-131
    • /
    • 2013
  • The crystallization behavior in the $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$amorphous alloys has been investigated. As-quenched $Al_{87}Ni_3Y_{10}$ amorphous phase decomposes by simultaneous formation of Al and intermetallic phase at the first crystallization step, while as-quenched $Al_{88}Ni_3Y_9$ amorphous phase decomposes by forming Al nanocrystals in the amorphous matrix. The density of Al nanocrystals is extremely high and the size distribution is homogeneous. Such a microstructure can result from rapid explosion of the nucleation event in the amorphous matrix or growth of the preexisting nuclei embedded in the as-quenched amorphous matrix. The final equilibrium crystalline phases and their distribution at 873 K are exactly same in both $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$ alloys.

Thermal Properties of 0.9CaMgSi2O6-0.1MgSiO3 Glass-Ceramics

  • Jeon, Chang-Jun;Sun, Gui-Nam;Lee, Jong-Kyu;Ju, Han-Sae;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.111-117
    • /
    • 2012
  • Dependencies of thermal properties on the crystallization behavior of $0.9CaMgSi_2O_6-0.1MgSiO_3$ glass-ceramics were investigated as a function of heat-treatment temperature from $750^{\circ}C$ to $950^{\circ}C$. The crystallization behavior of the specimens depended on the heat-treatment temperature, which could be evaluated by differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis by the Rietveld-reference intensity ratio (RIR) combined procedure. With an increase of the heat-treatment temperature, the thermal conductivity and thermal diffusivity of the heat-treated specimens increased. These results could be attributed to the increase of crystallization with heat-treatment temperature. However, the specific heat capacity of the heat-treated specimens was not affected by the heat-treatment temperature. The thermal conductivities measured from $25^{\circ}C$ to $100^{\circ}C$ were also discussed for application to lighting-emitting diode (LED) packages and substrate materials.

Crystallization Behavior of Ti-(50-x)Ni-xCu(at%) (x = 20-30) Alloy Ribbons

  • Kim, Min-Su;Jeon, Young-Min;Im, Yeon-Min;Lee, Yong-Hee;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2011
  • Amorphous Ti-(50-x)Ni-xCu (at%) (x = 20, 25, 27, 30) alloy ribbons were prepared by melt spinning. Subsequently, the crystallization behavior of the alloy ribbons was investigated by X-ray diffraction and differential scanning calorimetry. ${\Delta}T$ (the temperature gap between $T_g$ and $T_x$) increased from 33 K to 47 K and the wavenumber ($Q_p$) decreased from 29.44 $nm^{-1}$ to 29.29 $nm^{-1}$ with increasing Cu content from 20 at% to 30 at%. The activation energy for crystallization decreased from 188.5 kJ/mol to 170.6 kJ/mol with increasing Cu content from 20 at% to 25 at%; afterwards, the activation energy remained near constant. Crystallization occurred in two-stage: amorphous-B2-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content less than 25 at%, while it occurred in three-stage; amorphous-B2-TiCu-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content more than 27 at%.

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.