• Title/Summary/Keyword: Crystallite Size

Search Result 290, Processing Time 0.02 seconds

Preparation and Characteristics of Bioactive Silica-free Calcium Phosphate Glass-ceramics (실리카를 함유하지 않는 생체활성 칼슘인산염 글라스-세라믹스의 합성 및 특성)

  • Song, Chang-Weon;Lee, Joo-Hyeok;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.217-221
    • /
    • 2011
  • Glass-ceramic materials, which consist of glass matrix phase containing crystalline ${\beta}-Ca_3(PO_4)_2$ and ${\beta}-Ca_2P_2O_7$, have been prepared by heating at $750-900^{\circ}C$ of calcium phosphate invert glasses in the silica-free $CaO-P_2O_5-TiO_2-Na_2O$, system. With increasing heating temperature from 750 to $900^{\circ}C$, the crystallite size of precipitated ${\beta}-Ca_3(PO_4)_2$ in glass with $55CaO{\cdot}35P_2O_5{\cdot}3TiO_2{\cdot}7Na_2O$ (mol%) composition increased from 48 to 91 nm. With the extension of the immersion time in dilute acetic acid solution (pH = 5) to ${\geq}$200 min, the degree of dissolution of $Ca^{2+}$ and $P^{5+}$ ions in the glass-ceramics was linearly increased and the solution was constantly maintained at pH = ~7. Biomimetic nanostructured (62-88 nm in average dia.), sphere-shaped hydroxyapatite was homogeneously formed on the surface of the glass-ceramics when socked for 7-14 days in a Hanks' solution, indicating bioactivity of the prepared glass-ceramics.

Effect of Change of Hydrogen Rich Reductant on HC-SCR over Co-Pt/ZSM5 Catalyst (수소 풍부 환원제 변화가 Co-Pt/ZSM5 촉매를 사용하는 탈질 HC-SCR 반응에 미치는 영향)

  • Kim, Seong-Soo;Kim, Dae-Young;Oh, Se-Young;Yoo, Seong-Jeon;Sur, Young-Sek;Kim, Jin-Gul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2012
  • HC-SCR was conducted over Co-Pt/ZSM5 catalyst coated over 200 cpsi cordierite in the condition of atomspheric pressure and $200^{\circ}C-500^{\circ}C$. Weight ratio of Co/Pt determined from EDX analysis was 8/2, which was almost equal to the weight ratio at preparation step. XPS showed that nitrates within cobalt precursor and chlorine withn Pt precursor were removed. TEM result demonstrated that crystallite size of cobalt and Pt was under 5nm. Among these tested hydrocarbon reductants, isobutane ($i-C_4H_{10}$) showed the highest de-$NO_x$ yield of 80% under the condition of the mole ratio of reductant/NOx=1.0 at $180^{\circ}C$. De-$NO_x$ yield from HC-SCR was increased as the carbon number of hydrocarbon reductant was increased. The decrease of bonding energy between C and H of HC reductant played a role to increase of de-$NO_x$ yield, which indicated that the dissociation step of C-H bond of hydrocarbon molecule might be the rate determining step of HC-SCR. The increase of oxygen concentration in the feed resulted in the decrease of de-$NO_x$ yield but the increase of CO and $N_2O$ yield.

Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP (DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

  • Ranot, Mahipal;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.40-43
    • /
    • 2017
  • Carbon coating approach is used to prepare carbon-doped $MgB_2$ bulk samples using low-cost naphthalene ($C_{10}H_8$) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at $120^{\circ}C$ and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for $MgB_2$ doped with carbon. As compared to un-doped $MgB_2$, a systematic enhancement in $J_c(H)$ properties with increasing carbon doping level was observed for naphthalene-derived C-doped $MgB_2$ samples. The substantial enhancement in $J_c$ is most likely due to the incorporation of C into $MgB_2$ lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

Effect of Reaction Conditions on the Particle Properties for Synthesis of Stabilized Zirconia by Modified Oxalate Method

  • Park, Hyun-wook;Lee, Young Jin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Hae Jin;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.529-534
    • /
    • 2016
  • Nanocrystalline powder of zirconia stabilized with 8 mol% yttria (YSZ) has been synthesized through oxalate process using $ZrOCl_2{\cdot}8H_2O$ and $Y(NO_3)_3{\cdot}6H_2O$ as starting materials. Understanding of the characteristic changes of YSZ powder as a function of processing conditions is crucial in developing dense and porous microstructures required for fuel cell applications. In this research, microstructure change, surface area, particle shape and particle size were measured as a function of different processing conditions such as calcination temperature, stirring speed and concentration of starting materials. The resultant crystallite sizes were calculated by XRD-LB (X-Ray Diffraction Line-Broadening) method, BET method, and morphology of the crystal was observed in TEM and FE-SEM. The TEM examination showed that the powder synthesized with 0.7 M of YSZ concentration had a spherical morphology with sizes ranging from 20 to 40 nm. However, the powder was gradually aggregated above 1.0 M of YSZ concentration with the aggregation being intensified as the YSZ concentration was increased.

Properties of SrSnO3:Tb3+ Green-Emitting Phosphor Thin Films Grown on Sapphire and Quartz Substrates (사파이어와 석영 기판 위에 성장된 SrSnO3:Tb3+ 녹색 형광체 박막의 특성)

  • Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.546-551
    • /
    • 2016
  • $SrSnO_3:Tb^{3+}$ phosphor thin films were prepared on sapphire and quartz substrates in the growth temperature range of $100{\sim}400^{\circ}C$ by using the radio frequency magnetron sputtering deposition. The resulting $SrSnO_3:Tb^{3+}$ thin films were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible-infrared spectrophotometer, and photoluminescence spectrometer. The results indicated that the morphology, optical transmittance, band gap energy, and luminescence intensity of the phosphor thin films significantly depended on the growth temperature. All the thin films, regardless of the type of substrate, showed an amorphous behavior. As for the thin films deposited on sapphire substrate, the maximum crystallite size was obtained at a growth temperature of $400^{\circ}C$ and the strongest emission was green at 544 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of Tb3+. The average optical transmittance for all the thin films grown on sapphire and quartz substrates was decreased as the growth temperature increased from 100 to $400^{\circ}C$. The results suggest that the optimum growth temperatures for depositing highly-luminescent $SrSnO_3:Tb^{3+}$ phosphor thin films on sapphire and quartz substrates are 400 and $300^{\circ}C$, respectively.

Synthesis and Dispersion of Ceria(CeO2) Nanoparticles by Solvothermal Process (용매열 공정을 이용한 세리아(CeO2) 나노분말의 합성 및 분산거동)

  • Lim, Tae Seop;Ock, Ji Young;Choi, Yeon Bin;Kim, Bong Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.376-382
    • /
    • 2020
  • CeO2 nanoparticles, employed in a lot of fields due to their excellent oxidation and reduction properties, are synthesized through a solvothermal process, and a high specific surface area is shown by controlling, among various process parameters in the solvothermal process, the type of solvent. The synthesized CeO2 nanoparticles are about 11~13 nm in the crystallite size and their specific surface area is about 65.38~84.65 ㎡/g, depending on the amount of ethanol contained in the solvent for the solvothermal process; all synthesized CeO2 nanoparticles shows a fluorite structure. The dispersibility and microstructure of the synthesized CeO2 nanoparticles are investigated according to the species of dispersant and the pH value of the solution; an improvement in dispersibility is shown with the addition of dispersants and control of the pH. Various dispersing properties appear according to the dispersant species and pH in the solution with the synthesized CeO2 nanoparticles, indicating that improved dispersing properties in the synthesized CeO2 nanoparticles can be secured by applying dispersant and pH control simultaneously.

Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process

  • Phimmavong, Kongsy;Hong, Seok-Hyoung;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.481-487
    • /
    • 2021
  • ZnO particles are successfully synthesized at 150 ℃ for 30 min using zinc acetate as the Zn source and 1,4-butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH- amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH- ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.

Microstructure Control and Upconversion Emission Improvement of Y2O3:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Bae, Chaehwan;Jung, Kyeong Youl
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.450-457
    • /
    • 2021
  • Upconversion (UC) properties of Y2O3:Ho3+/Yb3+ spherical particles synthesized by spray pyrolysis were investigated by changing the dopant concentration and calcination temperature. Citric acid (CA), ethylene glycol (EG) and N, N-dimethylformamide (DMF) were used to control the microstructure of Y2O3:Ho3+/Yb3+ particles. In terms of achieving the highest UC green emission intensity, the optimal concentrations of Ho3+ and Yb3+ were found to be 0.3% and 3.0%, respectively. In addition, the UC intensity of Y2O3:Ho3+/Yb3+ showed a linear relationship with the crystallite size. The use of organic additives allows Y2O3:Ho3+/Yb3+ particles to have a spherical and dense structure, resulting in significantly reducing the surface area while maintaining high crystallinity. As a result, the UC emission intensity of Y2O3:Ho3+/Yb3+ particles having a dense structure showed the UC emission intensity about 3.8 times higher than that of hollow particles prepared without organic additives. From those results, when Y2O3:Ho3+/Yb3+ particles are prepared by the spray pyrolysis process, the use of the CA/EG/DMF mixtures as organic additives has been suggested as an effective way to substantially increase the UC emission intensity.