• 제목/요약/키워드: Crystalline Diamond

검색결과 68건 처리시간 0.024초

전자 디바이스용 다이아몬드 박막의 제조 및 결정성장 특성 (Preparation of Diamond Thin film for Electric Device and Crystalline Growth)

  • 김규식;박수길;손원근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1720-1723
    • /
    • 2000
  • Boron doped conducting diamond thin film were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was controlled from 0ppm to $10^4$ppm (B/C). The Si substrate was tilted ca. 10$^{\circ}$ to make Si substrate have different height and temperature. Experimental results show that same condition but different temperature of Si substrate by height made different crystalline of diamond thin film. There were appeared 3$\sim$4 step of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at 1334$cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near 1550$cm^{-1}$.

  • PDF

MWPCVD법에 의한 다이아몬드 박막의 제조 및 결정성장 특성 (Preparation and Crystalline Growth Properties of Diamond Thin Film by Microwave Plasma CVD)

  • 김규식;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.905-908
    • /
    • 2000
  • The growth properties of diamond grain were examined by Raman spectroscopy and microscope images. Diamond thin films were prepared on single crystal Si wafers by microwave Plasma chemical vapor deposition. Preparation conditions, substrate temperature, boron concentration and deposition time were controlled differently. Prepared diamond thin films have different surface morphology and grain size respectively Diamond grain size was gradually changed by substrate temperature. The biggest diamond grain size was observed in the substrate, which has highest temperature. The diamond grain size by boron concentration was slightly changed but morphology of diamond grain became amorphous according to increasing of boron concentration. Time was also needed to be a big diamond grain. However, time was not a main factor for being a big diamond grain. Raman spectra of diamond film, which was deposited at high substrate temperature, showed sharp peaks at 1334$cm^{-1}$ / and these were characteristics of crystalline diamond. A broad peak centered at 1550$cm^{-1}$ /, corresponding to non-diamond component (sp$^2$carbon), could be observed in the substrate, which has low temperature.

  • PDF

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

다결정 다이아몬드 필름의 신경종양세포(SH-SY5Y) 배양 특성 (Characteristic of neuroblastoma cell (SH-SY5Y) culture on the crystalline diamond film)

  • 남효근;오홍기;김대훈;김민혜;박혜빈;지광환;송광섭
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.10-15
    • /
    • 2013
  • In order to fabricate high sensitive and stable biosensors, we require the material with superior biocompatibility and physical-chemical stability. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond thin films have been focal pointed as bio-applications and their possibility has been evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0-3.5V), low background current and chemical-physical stability. In this work, we have cultured neuroblastoma cell (SH-SY5Y) on the crystalline diamond films. We use MTT assay to evaluate the characteristic of cell culture on the substrates. As a result, neuroblastoma cell was cultured on the crystalline diamond film as similar as cell culture dish.

The removal of saw marks on diamond wire-sawn single crystalline silicon wafers

  • Lee, Kyoung Hee
    • 한국결정성장학회지
    • /
    • 제26권5호
    • /
    • pp.171-174
    • /
    • 2016
  • The diamond wire sawing method to produce silicon wafers for the photovoltaic application is still a new and highly investigated wafering technology. This technology, featured as the higher productivity, lower wear of the wire, and easier recycling of the coolant, is expected to become the mainstream technique for slicing the silicon crystals. However, the saw marks on the wafer surface have to be investigated and improved. This paper discusses the removal of saw marks on diamond wire-sawn single crystalline silicon wafer. With a pretreatment step using tetramethyl ammonium hydroxide ($(CH_3)_4NOH$, TMAH) and conventional texturing process with KOH solution (1 % KOH, 8 % IPA, and DI water), the saw marks on the surface of the diamond wire-sawn silicon wafers can be effectively removed and they are invisible to naked eyes completely.

공정변수에 따른 microwave plasma CVD 다이아몬드/Ti 박막 증착 양상 조사 (Parametric study of diamond/Ti thin film deposition in microwave plasma CVD)

  • 조현;김진곤
    • 한국결정성장학회지
    • /
    • 제15권1호
    • /
    • pp.10-15
    • /
    • 2005
  • Microwave plasma CVD 다이아몬드/Ti 박막 성장 시 CH₄/H₂ 가스의 유량비율, chuck bias, microwave power 등이 다이아몬드 박막의 구조적 특성과 입자밀도에 미치는 영향에 대하여 조사하였다. 2∼3 CH₄ Vol.% 조건일 때 sp³-결합성의 탄소 neutral 들이 우선적으로 형성되고 sp²-결합성의 탄소 neutral 들이 선택적으로 제거됨에 따라 양질의 다이아몬드 박막을 얻을 수 있었으며, 다이아몬드 입자 증착 기구를 해석하였다. Ti 기판에 걸어준 negative chuck bias가 증가함에 따라 다이아몬드 핵생성이 증진되어 다이아몬드 입자 밀도가 증가하였고, 임계 전압은 약 -50V 임을 확인하였다. 또한, microwave power가 증가함에 따라 미세결정질(micro-crystalline) graphite 층 생성이 제어되고 다이아몬드 층이 형성됨을 확인하였다.

XPS Characterization and Morphology of MgO Thin Films grown on Single-Crystalline Diamond (100)

  • Lee, S.M.;Ito, T.;Murakami, H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.19-27
    • /
    • 2003
  • Morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723K by means of electron beam evaporation using MgO powder source. Atomic force microscopy images indicated that the film grown at RT without $O_2$ supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without $O_2$ has the closest composition to the stoichiometric MgO, and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively. These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.

  • PDF

Field emission of diamond films grown on glass substrates at low temperatures

  • Lee, S.W.;Han, I.T.;Lee, N.;Choi, W.B.;Kim, J.M.;Jeon, D.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 1999
  • Using microwave plasma-enhanced chemical vapor deposition, diamond films were successfully grown on Ti-coated glass substrates at temperatures as low as around 500$^{\circ}C$ in behalf of practical applications to field emitters. Electron emission was observed at turn-on fields below 18V-$\mu\textrm{m}$. Field emission characteristics of diamond films were discussed in terms of their crystalline qualities. diamond films with poorer crystalline qualities showed better field emission properties.

  • PDF

Crystalline Growth Properties of Diamond Thin Film Prepared by MPCVD

  • Park Soo-Gil;Kim Gyu-Sik;Einaga Yasuaki;Fujishima Akira
    • 전기화학회지
    • /
    • 제3권4호
    • /
    • pp.200-203
    • /
    • 2000
  • Microwave plasma chemical vapor deposition을 이용하여 붕소가 도핑된 전도성 다이아몬드 박막을 제조하였다. 탄소원으로는 아세톤과 메탄올을 사용하였으며, 붕소원으로는 $B_2O_3$를 사용하고, 운반가스로는 수소를 사용하였다. 이때 붕소의 도핑농도는 약 $10^2ppm\;(B/C)$이였다. Si 기질 각 부분의 온도와 플라즈마에서의 거리를 다르게 하기 위해서 Si 기질을 배치함에 있어 약$10^{\circ}$를 기울여 다이아몬드 박막을 성장시켰다. 실험결과 모두 동일한 조건 이였으나 같은 Si 기질 위에 높이에 따른 온도구배가 형성되었으며, 그에 따라 다이아몬드의 결정 또한 각기 달랐다. 다이아몬드 박막에 나타난 결정형태의 분포는 약 $3\~4$부분으로 나뉘어 있었다 제조된 다이아몬드 박막의 특성을 확인하기 위해 Raman spectrum을 이용해 다이아몬드의 결정성을 확인하였고, 표면의 형태를 관찰하기 위해 현미경을 사용하였다. 입자의 크기는 각기 다른 Si기질의 높이에 의한 온도구배로 인하여, 기질의 높이에 따라 서서히 달라졌다. 다이아몬드 박막의 Raman spectrum측정결과 $1334cm^{-1}$에서 강한 peak가 발견되었으며, 이것은 결정성 다이아몬드의 일반적인 특성 이였다. Si 기질 중 낮은 곳에 위치한 부분의 Raman spectrum은 비다이아몬드의 peak인 $1550cm^{-1}$ 부근에서 넓게 peak가 상승된 것이 관찰되었다.