• Title/Summary/Keyword: Crystal shape

Search Result 583, Processing Time 0.023 seconds

Crystal growth of yttrium vanadate by the EFG technique

  • Kochurikhin, V.V.;Ivanov, M.A.;Suh, S.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.203-206
    • /
    • 2001
  • The applicability of shaped growth of yttrium orthovanadate was approved by successful growth of rod-like single crystals with the rectangular shape. Nd-doped single crystals with content of $Nd^{3+}$ ions of 1,2,3,5 atomic % in the starting melt were grown by the EFG technique with the size up to $10^{*}10mm$ in section and up to 85 mm in length. For the testing of the multiple growth of the orthovanadates, two and three Nd-and Yb-doped $YVO_{4}$ single crystals were grown by the EFG technique simultaneously up to 110 mm in length.

  • PDF

Optical properties of vanadium dioxide thin films on c-Al2O3 (001) substrates by in-situ RF magnetron sputtering

  • Han, Seung Ho;Kang, So Hee;Kim, Hyeongkeun;Yoon, Dae Ho;Yang, Woo Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.224-229
    • /
    • 2013
  • Vanadium oxide thin films were deposited on $c-Al_2O_3$ (001) substrate by in-situ RF magnetron sputtering. Oxygen partial pressure was adjusted to prepare thermochromic $VO_2$ phase. X-ray diffraction patterns and scanning electron microscopy convincingly showed that plate-like $V_2O_5$ grains were changed into round-shape $VO_2$ grains as oxygen partial pressure decreased. After the optimized deposition conditions were fixed, the effect of substrate temperature and orientation on the optical properties of $VO_2$ thin films was analyzed.

The Study of Microstructure Influence at Fretting Contacts using Crystal Plasticity Simulation (결정 소성 시뮬레이션을 이용한 프레팅 접촉에서의 마이크로 구조 영향에 관한 연구)

  • Ko, Jun-Bin;Goh, Chung-Hyun;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.84-91
    • /
    • 2005
  • The role of microstructure is quite significant in fretting of Ti-6Al-4V since its material properties depend strongly on crystallographic texture. In this study, we adopt crystal plasticity theory with a 2-D planar triple slip idealization to account fur microstructure effects such as grain orientation distribution, grain geometry, as well as $\alpha$ colony size. Crystal plasticity simulations suggest strong implications of microstructure effects at fretting contacts.

New methods of the growing complicated shaped sapphire products: variable shaping technique and local dynamic shaping technique

  • Borodin, V.A.;Sidorov, V.V.;Steriopolo, T.A.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.417-423
    • /
    • 1999
  • Detailed description of the crystal growth methods permitting one to obtain complicated shape crystals from the melt is given. The variable shaping technique provides the growth of crystals with a discrete altering cross-section configuration during crystallization. The dynamic local shaping technique enables one to grow items with a continuous alteration of the side surface profile by a preset program.

  • PDF

A ROBUST AND ACCURATE PHASE-FIELD SIMULATION OF SNOW CRYSTAL GROWTH

  • Li, Yibao;Lee, Dong-Sun;Lee, Hyun-Geun;Jeong, Da-Rae;Lee, Chae-Young;Yang, Dong-Gyu;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.15-29
    • /
    • 2012
  • In this paper we introduce 6-fold symmetry crystal growth using new phase-field models based on the modified Allen-Cahn equation. The proposed method is a hybrid method which uses both analytic and numerical solutions. We then show this method can be extended to $k$-fold case. The Wulff construction procedure is provided to understand and predict the shape of crystals. We also present a detailed mathematical proof of the validity of the Wulff construction. For computational results, we verify the accuracy and efficiency of the method for snow crystal growth.

Synthesis and Structure Analysis of α and β Forms of [12] Metallacrown-6 Nickel(II) Complex: [Ni6(SCH2CH2CH3)12]

  • Xiao, Hai Lian;Jian, Fang Fang;Zhang, Ke Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.846-848
    • /
    • 2009
  • Two modifications of the ${\alpha}\;and\;{\beta}$ forms of propyl mercaptan nickel(II) cluster, [$Ni_6(SCH_2CH_2CH_3)_{12}$], have been synthesized and their crystal structures have been determined by single-crystal X-ray diffraction. The alkyl groups are away from $Ni_6$ ring in $\alpha$ form whereas they are near to the Ni atom in $\beta$ form. The distance of Ni-H in $\beta$ form [2.576(5) $\AA$] is much shorter than that in $\alpha$ form [3.101(2) $\AA$]. In the crystal lattice of $\beta$ form, the whole structure forms a flower shape.

Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 설계민감도 해석과 위상 최적설계)

  • Ha Youn-Doh;Cho Seon-Ho;Jung Sang-Sub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Fabrication of Polymer Laser Device by Two-Photon Induced Photopolymerization Technique

  • Yokoyama, Shiyoshi;Nakahama, Tatsuo;Miki, Hideki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.231-231
    • /
    • 2006
  • We fabricated a polymer sub-microstructure for optical device application by two-photon-induced laser lithography technique. Polymer pattern could be minimized as small as ${\sim}100\;nm$. The photopolymerization resin contains laser-dye, thus promising a high level of the optical gain. We utilized the lithography technique to the photonic crystal application, where the template of the two-dimensional photonic crystal was modified by polymer gain medium as defect-shape and line-shape orientations. Photonic band gap effect from polymer-doped photonic crystals is expected to exploit the application such as organic solid-state laser device.

  • PDF

Electro-Optic Characteristics of the Dual Domain Fringe-Field Switching(FFS) Mode using the Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 이중 도메인 FFS 모드의 전기광학 특성)

  • 김향율;고재완;노정동;서대식;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.720-725
    • /
    • 2002
  • The fringe-field switching (FFS) mode was known to exhibit both a wide viewing angle and high transmittance, especially when using the liquid crystal (LC) with negative dielectric anisotropy. In the device, the LC director rotates almost in-plane. However, in the bright state the device shows bluish and yellowish color along parallel and perpendicular to the LC director at off-normal directions since the LC director rotates only in one direction. Such a problem was greatly improved using a wedge shape of only pixel electrodes. In this way two different field directions exist in a pixel, enabling the LC director to rotate in two opposite directions. Consequently, owing to dual domain effect when using the LC with negative dielectric anisotropy, the viewing angle characteristics are greatly improved.

New Edge Structure of a Pixel Electrode for Improving the Transmittance of the Fringe Field Switching(FFS) Mode LCD (FFS모드의 투과율 향상을 위한 새로운 화소전극 구조제안)

  • Lee, Won-Jun;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.983-990
    • /
    • 2007
  • In this study, we propose a new pixel edge shape of the fringe field switching(FFS) mode which ensures more stable movement of liquid crystal molecules and higher transmittance at the edge part. the electro optical properties were calculated 3-dimensionally using by commercially available "Techwiz LCD". From the simulation results, we showed that the dynamic stability of liquid crystal molecules was obtained in a new pixel structure. We also revealed that the transmittance of the new pixel structure increased more than 6 % compared to that of the conventional pixel structure.