• Title/Summary/Keyword: Crystal shape

Search Result 583, Processing Time 0.035 seconds

Formation of Liquid Crystal Gel with Hydrogenated Lecithin and Its Effectiveness

  • Kim In-Young;Lee Joo-Dong;Ryoo Hee-Chang;Zhoh Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.181-191
    • /
    • 2003
  • This study described about method that form liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in OW emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following. To form liquid crystal, an emulsifier used $4.0\;wt\%$ of cetostearyl alcohol (CA) by $4.0\;wt\%$ of HL as a booster, Moisturizers contained $2\;wt\%$ of glycerin and $3.0\;wt\%$ of 1.3-butylene glycol (1,3-BG). Suitable emollients used $3.0\;wt\%$ of cyclomethicone, $3.0\;wt\%$ of isononyl isononanoate (ININ), $3.0\;wt\%$ of cerpric/carprylic triglycerides (CCTG), $3.0\;wt\%$ of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions. Considering safety of skin, PH was the most suitable $\pm61.0$ ranges. The stable hardness of LCG formation appeared best in $32\;dyne/cm^2.$ Particle of LCG is forming size of $1{\~}20\;{\mu}m$ um range, and confirmed that the most excellent LCG is formed in $1{\~}6\;{\mu}m$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi-layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased $30.6\%$. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.

Morphological study on non-seeded grown AlN single crystals (무종자결정 상에 성장된 AlN 결정의 형태학적 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.265-268
    • /
    • 2012
  • The growth of AlN single crystals of large size and good quality is of prime importance for UV LEDs and power devices applications. However, the crystals having the size of more than 1 inch and high quality have not been reported in the world. In the PVT growth of AlN, the crystal morphology of as grown were important because the preferred orientation of growth of it was evaluated for growth rate increase. In the present study, the AlN single crystals grown by PVT process were evaluated by the side of the growth morphology. Optical microscopic characterization was carried out to observe the shape of the crystals and the growth facets. Furthermore the growth habit of it were discussed by observation of the surface of AlN crystals.

Electron Microscopic Studies on the Larval Hemocytes of Drosophila melanogaster (초파리 유충의 혈구에 대한 전자현미경적 연구)

  • Yu, Chai-Hyeock;Yang, He-Young;Kim, Woo-Kap;Kim, Chang-Whan
    • The Korean Journal of Zoology
    • /
    • v.19 no.4
    • /
    • pp.143-154
    • /
    • 1976
  • The hemocytes of Drosophila melanogaster were observed with electron microscope, and five types of the cells were identified; prohemocyte, plasmatocyte, granular cell, crystal cell and oenocytoid, accounting for about 5%, 35%, 45%, 10%, 5% respectively of total cell numbers. Prohemocytes are characterized by a low concentration of intracellular organelles. Plasmatocytes are spindle or oval in shape and have relatively plenty of organelles and lysosomes. Granullar cells are the most polymorphic. They have numerous pseudopod-like projections and contain various granules and inclusions. In this cell type, intracellular organelles are fully developed. Crystal cells are characterized by numerous crystals composed of fine granules arranged regularly. Oenocytoids are the largest one among all cell types and contain relatively developed organelles.

  • PDF

Midinfrared Refractive-index Sensor with High Sensitivity Based on an Optimized Photonic Crystal Coupled-cavity Waveguide

  • Han, Shengkang;Wu, Hong;Zhang, Hua;Yang, Zhihong
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.444-449
    • /
    • 2021
  • A photonic crystal coupled-cavity waveguide created on silicon-on-insulator is designed to act as a refractive-index-sensing device at midinfrared wavelengths around 4 ㎛. To realize high sensitivity, effort is made to engineer the structural parameters to obtain strong modal confinement, which can enhance the interaction between the resonance modes and the analyzed sample. By adjusting some parameters, including the shape of the cavity, the width of the coupling cavity, and the size of the surrounding dielectric columns, a high-sensitivity refractive-index sensor based on the optimized photonic crystal coupled-cavity waveguide is proposed, and a sensitivity of approximately 2620 nm/RIU obtained. When an analyte is measured in the range of 1.0-1.4, the sensor can always maintain a high sensitivity of greater than 2400 nm/RIU. This work demonstrates the viability of high-sensitivity photonic crystal waveguide devices in the midinfrared band.

Drowning-out Crystallization of Calcium Lactate for Crystal Size Control (결정입자 제어를 위한 젖산칼슘 용석결정화 기술)

  • Kim, Jong-Min;Chang, Sang Mok;Kim, In-Ho;Koo, Yoon-Mo;Hong, Haehyun;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.740-746
    • /
    • 2009
  • In the present study, the drowning-out crystallization of L(+)-calcium lactate was investigated in order to develop the crystallization separation process. The crystallization of the calcium lactate was induced by injecting the alcoholic anti-solvent into the aqueous solution of calcium lactate and the control of the calcium lactate crystal size during the crystallization was primarily investigated under the consideration of the anti-solvent species, anti-solvent composition and agitation speed as the key operating factors. Alcohols of methanol, ethanol, n-propanol and i-propanol were used as the anti-solvent for the drowning-out crystallization. Prior to the crystallization experiment, the solubility of calcium lactate in the water-alcohol mixture was measured along with the variation of the alcohol species and composition, which was necessary to estimate the supersaturation level of the crystallization. By the drowning-out crystallization, the calcium lactate crystals of the fabric shape were obtained. Using the ethanol as the antisolvent, the fabric crystals close to the needle shape were produced. However, the hairy crystals were obtained by using the propanol as the anti-solvent. Due to such morphological features, the crystals was highly apt to form the aggregates. The aggregation of the crystals was intensified as increasing the alcohol fraction in the water-alcohol mixture. Meanwhile, the agitation caused the breakage of crystals, resulting in the decrease of the crystal size. Therefore, the crystal size in the crystallization was predominantly determined by the competition between the crystal aggregation and breakage.

Effects of mineralizer and concentration on the morphology of the $CaTiO_3$ powders prepared by hydrothermal method (수열법에 의한 $CaTiO_3$분말 합성 시 광화제와 농도가 입자형상에 미치는 영향)

  • 정항철;서동석;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.329-334
    • /
    • 2002
  • The $CaTio_3$powder with perovskite structure was synthesized by mixing anatase $TiO_2$and $Ca(OH)_2$powders as starting materials, and KOH or NaOH as mineralizer, followed by hydrothermal method. The change of crystal structure, particle shape and size of the synthesized $CaTiO_3$powder was investigated with kind and concentration of mineralizer. It was found that the spherical particles of 0.7 $\mu$m were obtained when using 1N KOH and the hexahedrons particles of 3$\mu$m were obtained for the case of using 10 N KOH. With increasing KOH concentration, the particle shape was changed from sphere to hexahedrons and its size also increased. When using 1 N NaOH, the powder was consisted of 0.5~1 $\mu$m particle in size, whereas hexahedrons of 1~4 $\mu$m and whiskers more than 10$\mu$m in size was obtained for the 10 N NaOH solution. With increasing NaOH concentration, the particle shape was varied from hexahedrons to whiskers, showing the similar result with the KOH case. It was confirmed from EDS analysis that Na element, which was detected in hexahedrones was not contained in the whiskers.

Shape Ellipticity Dependence of Exciton Fine Levels and Optical Nonlinearities in CdSe and CdTe Nanocrystal Quantum Dots

  • Yang, Hanyi;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Shape ellipticity dependence of the exciton fine energy levels in CdTe and CdSe nanocrystal quantum dots were compared theoretically by considering the crystal structure and the Coulomb interaction of an electron and a hole. While quantum dot ellipticity changes from an oblate to prolate quantum dot via spherical shape, both the fine energy levels and the dipole moment in wurtzite structure of a CdSe quantum dot change linearly for ellipticity. In contrast, CdTe quantum dots were found to show a level crossing between the bright and dark exciton states with a significant change of the dipole moment due to the cubic structure. Shape ellipticity dependence of the optical nonlinearities in CdTe and CdSe nanocrystal quantum dots was also calculated by using semiconductor Bloch equations. For a spherical shape quantum dot, only $1^L$ dominates the optical nonlinearities in a CdSe quantum dot, but both $1^U$ and $0^U$ contribute in a CdTe quantum dot. As excitation pulse area becomes strong (${\sim}{\pi}$), the optical nonlinearities of both CdSe and CdTe quantum dots are mainly governed by absorption saturation. However, in the case of a prolate CdTe quantum dot, the real part of the nonlinear refractive index becomes relatively significant.

Preparation of Calcium Sulfate Hemihydrate Using Stainless Refinery Sludge and Waste Sulfuric Acid

  • Eun, Hee-Tai;Ahn, Ji-Whan;Kim, Hwan;Kim, Jang-Su;Sung, Ghee-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.432-436
    • /
    • 2001
  • In this study, calcium sulfate(gypsum) powder was obtained using waste sulfuric acid and stainless refinery sludge by- produced from chemical reagent and the iron industry, by the neutralization of waste sulfuric acid. As variables for the experiment the mole ratio of the H$_2$SO$_4$ : Ca(OH)$_2$, the pH, the reaction temperature and time, the amount of catalyst were used. The crystal shape and microstructure of obtained powder were observed by XRD and SEM, and the thermal property was investigated by DTA. As the NaCl is added 0~20wt% as a catalyst to the H$_2$SO$_4$ : Ca(OH)$_2$, system it can be found that the crystal shape goes through the processes as follows : gypsum dihydratlongrightarrowgypsum hemihydrate+gypsum dihydratelongrightarrowgypsum hemihydrate. And gypsum hemihydrate is $\beta$-type as the result of DTA. As waste sulfuric acid and stainless refinery sludge were used, the pH of reacted solution (which was 0.8) was rapidly raised up to 8~9 by the addition of stainless sludge and gypsum dihydrate was produced as a by-product. Therefore, it was found that stainless refinery sludge is sufficiently applicable for the neutralization of waste sulfuric acid.

  • PDF

Optical process of polysilicaon on insulator and its electrical characteristics (절연체위의 다결정실리콘 재결정화 공정최적화와 그 전기적 특성 연구)

  • 윤석범;오환술
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.331-340
    • /
    • 1994
  • Polysilicon on insulator has been recrystallized by zone melting recrystallization method with graphite strip heaters. Experiments are performed with non-seed SOI structures. When the capping layer thickness of Si$\_$3/N$\_$4//SiO$\_$2/ is 2.0.mu.m, grain boundaries are about 120.mu.m spacing and protrusions reduced. After the seed SOI films are annealed at 1100.deg. C in NH$\_$3/ ambient for 3 hours, the recrystallized silicon surface has convex shape. After ZMR process, the tensile stress is 2.49*10$\^$9/dyn/cm$\^$2/ and 3.74*10$\^$9/dyn/cm$\^$2/ in the seed edge and seed center regions. The phenomenon of convex shape and tensile stress difference are completely eliminated by using the PSG/SiO$\_$2/ capping layer. The characterization of SOI films are showed that the SOI films are improved in wetting properties. N channel SOI MOSFET has been fabricated to investigate the electrical characteristics of the recrystallized SOI films. In the 0.7.mu.m thickness SOI MOSFET, kink effects due to the floating substrate occur and the electron mobility was calculated from the measured g$\_$m/ characteristics, which is about 589cm$\^$2//V.s. The recrystallized SOI films are shown to be a good single crystal silicon.

  • PDF

Formation Characteristics of Precipitated Calcium Carbonate by Carbonation Process

  • Kim, Chiho;Seok, Mingwang;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The characteristics and morphology of precipitated calcium carbonate (PCC) particles produced by carbonation process with various experimental conditions are investigated in this study. The crystal structures of PCC formed by carbonation process are calcite and aragonite. The crystal structure of PCC particles synthesized without adipic acid additive is calcite only, regardless of the reaction temperature. Needle-like shape aragonite phase started to form at reactor temperature of 80℃ with the adipic acid additive. Particle size of the single phase calcite PCC synthesized without adipic acid additive is about 1 ~ 3 ㎛, with homogenous distribution. The aragonite PCC also shows uniform size distribution. The reaction temperature and concentration of adipic acid additive do not show any significant effects on the particle size distribution. Aragonite phase grown to a large aspect ratio of needle-like shape showed relatively improved whiteness. The measured whiteness value of single calcite phase is about 95.95, while that of the mixture of calcite and aragonite is about 99.11.