• Title/Summary/Keyword: Crystal phase

Search Result 1,924, Processing Time 0.027 seconds

Low temperature growth of silicon thin film on sapphire substrate by liquid phase epitaxy for solar cell application (사파이어 기판을 사용한 태양전지용 실리콘 박막의 저온액상 에피탁시에 관한 연구)

  • Soo Hong Lee;Martin A. Green
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.131-133
    • /
    • 1994
  • Deposition of silicon on pretreated sapphire substrates has been investigated by the liquid phase epitaxy method at low temperatures. An average 14 $\mu\textrm{m}$ thickness of silicon was grown over a large area on sapphire substrate originally coated with a much thinner silicon layer $[0.5 \mu\textrm{m} (100) Si/(1102) sapphire]$ at low temperatures from $(380^{\circ}C to 460^{\circ}C)$.

  • PDF

Sintering and Isothermal Phase Transformation of Calcia Stabilized Tetragonal Zirconia Polycrystals (칼시아 안정화 정방정 지르코니아(Ca-TZP)의 소결 및 등온상전이 거동)

  • 곽효섭;백용혁;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Calcia stabilized zirconia polycrystal (Ca-TZP) powders synthesized by hydrothermal treatment was sintered at a temperature range of $1200^{\circ}C~1400^{\circ}C$ and investigated the properties of sintered body and the behaviors of isothermal phase transformation. The sintered bodies of Ca-TZP were shown the density of about 97% and the average mean tetragonal grain size of about $0.1~0.25{\mu}m$. Also, Ca-TZP specimen was more stable during aging at $250^{\circ}C$ than that of Y-TZP ceramics.

  • PDF

Relationship between inductively coupled plasma and crystal structure, mechanical and electrical properties of MoN coatings (유도결합 플라즈마 파워에 따른 MoN 코팅막의 결정구조 및 기계·전기적 특성 변화)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • Nanocrystalline MoN coatings were prepared by inductively coupled plasma magnetron sputtering (ICPMS) changing the plasma power from 0 W to 200 W. The properties of the coatings were analyzed by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, nanoindentation tester and semiconductor characterization system. As the ICP power increases, the crystal structure of the MoN coatings changed from a mixed phase of γ-Mo2N and α-Mo to a single phase γ-Mo2N. MoN coatings deposited by ICPMS at 200 W showed the most compact microstructure with the highest nanoindentation hardness of 27.1 GPa. The electrical resistivity of the coatings decreased from 691.6 μΩ cm to 325.9 μΩ cm as the ICP power increased.

Holographic storage of binary amplitude data patterns via their random phase modulation (이진진폭데이타 영상의 랜덤위상변조를 통한 홀로그래픽 저장)

  • 오용석;신동학;장주석
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.62-63
    • /
    • 2001
  • We studied a method to use a variable discrete random phase mask in 2-D binary data representation for efficient holographic data storage. The variable phase mask is realized by use of a liquid crystal display.

  • PDF

Fabrication of Mg3Sb2 and Mg3Bi2 Compounds and their composites by mechanical alloying (기계적 합금법에 의한 Mg3Bi2와 Mg3Sb2 화합물 및 복합체의 제조)

  • Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.189-194
    • /
    • 2013
  • Single phase crystalline powders of $Mg_3Sb_2$ and $Mg_3Bi_2$ were prepared by mechanical alloying Mg, Sb and Bi metals with planetary ball milling for 24~48 h. The compositions of starting raw materials for single phase $Mg_3Sb_2$ and $Mg_3Bi_2$ were 3Mg : 1.8Sb and 3Mg : 1.6Bi, respectively. Two types of mechanically alloyed powders obtained were mixed at some ratios for the fabrication of $Mg_3Sb_2-Mg_3Bi_2$ composites and then hot pressed under uniaxial pressure of 70 MPa at 723 K for 1 h. The main phase of composites was a stable phase similar to $Mg_3Bi_2$ phase with a small amount of Bi phase. The distributions of Sb and Bi elements on EDS mapping images were discontinuous and their compositional contours were clear, which means that the hot pressed specimens were composites composed of two compounds of $Mg_3Sb_2$ and $Mg_3Bi_2$.

Crystal Structure of High Temperature Phase in ${Bi_2}{O_2}$-layered Perovskites ${ABi_2}{M_2}{O_9}$(A=Pb, Sr, M=Nb, Ta)

  • Kim, Jeong-Seog;Cheon, Chae-il;Lee, Chang-Hee;Choo, Woong-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.962-966
    • /
    • 2001
  • Crystal structure of PbBi$_2$Nb$_2$$O_{9}$ and $Sr_{1.2}$$Bi_{1.8}$Ta$_2$$O_{9}$ were determined by Rietveld method using neutron diffraction data in the temperature range of 300 K~1273K. Phase transition temperature were measured from the dielectric permittivitytemperature curve. The PbBi$_2$Nb$_2$$O_{9}$ showed a phase transition at about 810 K. In the Sr-excess compound $Sr_{1.2}$$Bi_{1.8}$Ta$_2$$O_{9}$ the phase transition was suppressed down to room temperature. Several structural models were tested by the Rietiveld refinement. Based on the \`R\` values and the structural parameters, the B2cb model is judged to be the most feasible one for the high temperature phase at above 810 K of the PbBi$_2$Nb$_2$$O_{9}$. The $Sr_{1.2}$$Bi_{1.8}$Ta$_2$$O_{9}$ sample was refined to show the most reliable results by the Am2m model.sults by the Am2m model.

  • PDF

TCC behavior of a shell phase in core/shell structure formed in Y-doped BaTiO3: an individual observation (Yttrium이 첨가된 BaTiO3에서 형성된 core/shell 구조에서 shell의 TCC 거동: 독립적 관찰)

  • Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.110-116
    • /
    • 2020
  • Grains in the BaTiO3, which is used for a dielectric layer in MLCC(Multi-Layer Ceramic Capacitor) are necessary to form core/shell structure for a stable TCC(Temperature Coefficient of Capacitance) behavior. The shell property has been deduced from the whole TCC behavior of core/shell structure due to its tiny size, ~ few ㎛. This study demonstrates the individual TCC behavior of the shell phase measured by micro-contact measurement in a temperature range between 35 and 135℃. Pt electrode pairs deposited on an enlarged core/shell structure in a diffusion couple sample made the measurement possible. As a result, the DPT (Diffusion Phase Transition) behavior of the shell phase was revealed as a different TCC behavior from that of the core: a broad peak with Tm at 65℃. This would be also useful experimental data for a modelling that depicts dielectric-temperature behavior of core/shell structure.

The Study on Phase Transition Pressure of Donor doped Pb(Zr0.52Ti0.48)O3 Ceramics with Diamond Anvil Cell (다이아몬드 엔빌 셀을 이용한 Donor doped Pb(Zr0.52Ti0.48)O3 세라믹스의 상전이 압력 연구)

  • Cho, Kyung-Ho;Ko, Young-Ho;Seo, Chang-Eui;Kim, Kwang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • Investigations of crystal structure and phase transition of $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics doped with A-site substitution impurity (La, Nd) or B-site substitution impurity (Sb, Nb) at 2 mol% concentration were carried out. X-ray diffraction patterns of impurities doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics have been measured at pressures up to ~5 GPa with diamond anvil cell and synchrotron radiation. The patterns were obtained at room temperature using methanol-ethanol mixture as pressure-transmitting media. In order to refine the crystal structure, Rietveld analysis has been performed. The structures of impurities doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics are tetragonal in space group P4mm at ambient pressure and are transformed into a cubic phase in space group Pm$\bar{3}$m as the pressure increases. In this study, when A-site substitution donor $La^{3+}$ or $Nd^{3+}$ ion was added to $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics, the phase transition phenomena showed up at the pressure of 2.5~4.6 GPa, but when B-site substitution donor $Nb^{5+}$ or $Sb^{5+}$ ion was added to it, the phase transition appeared at relatively lower pressure of 1.7~2.6 GPa.

Structure and Thermal Properties of a Ternary Al-Cr-Si Quenching Ribbon Manufactured by Single Roll Method (단일 롤 방법으로 제작한 3원계 Al-Cr-Si 급냉리본의 구조 및 열 특성)

  • Han, Chang-Suk;Kim, Ki-Woong;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • Al-Cr-Si ternary quench ribbons are fabricated using a single roll method and investigated for their structural and thermal properties. In particular, the sinterability is examined by pulse current sintering to obtain the following results. The Al74Cr20Si6 composition becomes a quasicrystalline single phase; by reducing the amount of Cr, it becomes a two-phase mixed structure of Al phase and quasicrystalline phase. As a result of sintering of Al74Cr20Si6, Al77Cr13Si10 and Al90Cr6Si4 compositions, the sintering density is increased with the large amount of Al phase; the sintering density is the highest in Al90Cr6Si4 composition. In addition, as a result of investigating the effects of sintering temperature and pressurization on the sintered density of Al90Cr6Si4, a sintered compact of 99% or more at 513 K and 500 MPa is produced. In particular, since the Al-Cr-Si ternary crystal is more thermally stable than the Al-Cr binary quaternary crystal, it is possible to increase the sintering temperature by about 100 K. Therefore, using an alloy of Al90Cr6Si4 composition, a sintered compact having a sintered density of 99 % or more at 613 K and 250 MPa can be manufactured. It is possible to increase the sintering temperature by using the alloy system as a ternary system. As a result, it is possible to produce a sintered body with higher density than that possible using the binary system, and at half the pressure compared with the conventional Al-Cr binary system.

Motion of Charged Micro-particle Immersed in Liquid Crystal Controlled by In-plane Field for Electro Paper Display

  • Baik, In-Su;Choi, Ju-Hwan;Jung, Byoung-Sun;Jeon, Sang-Youn;Song, Eun-Kyoung;Lee, Seung-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • We have studied the motion of charged micro-particles that are immersed in a nematic liquid crystal (LC) and controlled by in-plane field. The LC is an anisotropic liquid such that the viscosity of the LC depends on flow direction, phase of the LC, and temperature, which affects the motion of the charged particles under the influence of electric field. This study shows that the motion of charged particles mainly depends on the applied voltage and the LC phase, but does not show any significant influence from the initial alignment of LC, although one may expect directional difference in drag force due to interaction between LC and particle. The viscosity changes due to temperature variations in nematic phase also show no signification influence on particle velocity when compared to the effect from varying in-plane field strength.