• 제목/요약/키워드: Crystal field splitting

검색결과 111건 처리시간 0.025초

Splitting effect of photocurrent for $CdIn_2Te_4$ single crystal

  • You, Sang-Ha;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.84-85
    • /
    • 2009
  • The single crystals of p-$CdIn_2Te_4$ were grown by the Bridgman method without the seed crystal. From photocurrent measurements, it was found that three peaks, A, B, and C, correspond to the intrinsic transition from the valence band states of $\Gamma_7(A)$, $\Gamma_6(B)$, and $\Gamma_7(C)$ to the conduction band state of $\Gamma_6$, respectively. The crystal field splitting and the spin orbit splitting were found to be 0.2360 and 0.1119 eV, respectively, from the photocurrent spectroscopy. The temperature dependence of the $CdIn_2Te_4$ band gap energy was given by the equation of $E_g(T)=E_g(0)$ - $(9.43\times10^{-3})T^2$/(2676+T). $E_g(0)$ was estimated to be 1.4750, 1.7110, and 1.8229 eV at the valence band states of A, B, and C, respectively. The band gap energy of $p-CdIn_2Te_4$ at room temperature was determined to be 1.2023 eV.

  • PDF

Hot Wall Epitaxy(HWE)법에 의한 BaIn2Se4 에피레어 성장과 가전자대 갈라짐에 대한 광전류 연구 (Photocurrent Study on the Splitting of the Valence Band and Growth of BaIn2Se4 epilayers by Hot Wall Epitaxy)

  • 정준우;이기정;정경아;홍광준
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.134-141
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.

Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 한국결정성장학회지
    • /
    • 제18권5호
    • /
    • pp.217-224
    • /
    • 2008
  • 수평 전기로에서 $ZnIn_2Se_4$ 단결정을 합성하여 HWE(Hot Wall Epitaxy)방법으로 $ZnIn_2Se_4$ 단결정 박막을 반절연성 GaAs(100) 기판에 성장시켰다. $ZnIn_2Se_4$ 단결정 박막의 성장 조건을 증발원의 온도 $630^{\circ}C$, 기판의 온도 $400^{\circ}C$였고 성장 속도는 0.5 $\mu m/hr$였다. $ZnIn_2Se_4$ 단결정 박막의 결정성의 조사에서 10K에서 광발광(photoluminescence) 스펙트럼이 682.7nm ($1.816{\underline{1}}eV$)에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 요통곡선(DCRC)의 반폭치(FWHM)도 128 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농노와 이동도는 293 K에서 각각 $9.41\times10^{16}/cm^{-3}$, $292cm^2/V{\cdot}s$였다. $ZnIn_2Se_4$/SI(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293 K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 varshni공식에 따라 계산한 결과 $E_g(T)=1.8622\;eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$ 이었으며 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting energy ${\Delta}cr$값이 182.7meV이며 spin-orbit energy ${\Delta} so$값은 42.6meV임을 확인하였다. 10 K일 때 광전류 봉우리들은 n= 1, 27일때 $A_{1}-$, $B_{1}-$$C_{27}-exciton$ 봉우리임을 알았다.

Fe3+ 불순물이 첨가된 LiTaO3 단결정에서의 전자 상자성 공명 연구 (Electron Paramagnetic Resonance Study of impurity Fe3+ ion in LiTaO3 single crystal)

  • 민성기;염태호;이수형;이명규;신현권;유영문;김태훈;유성초
    • 한국자기학회지
    • /
    • 제13권4호
    • /
    • pp.171-175
    • /
    • 2003
  • Czochralski방법으로 성장된 정비조성 LiTaO$_3$ 단결정내에 불순물로 첨가되어 있는 Fe$^{3+}$ 이온에 대하여 상온에서 전자 상자성 공명(EPR : Electron Paramagnetic Resonance) 실험을 실행하였다. X-band(9.447 ㎓) 스펙트로미터를 사용하여 Fe$^{3+}$ 이온에 대한 공명 흡수선을 결정학적 주평면에서 시료를 돌려가면서 자기장을 가하여 각도의존 데이터를 얻었다. 이렇게 얻은 공명 자기장을 유효 스핀하밀토니안을 사용하여 분광학적 분리인자 g 및 영자기장 갈라지기(ZFS: Zero Field Splitting) 상수 b$_{2}$sup 0/ (=D)를 계산하였다. 분석결과 정비조성으로 성장시킨 LiTaO$_3$ 단결정에서 얻은 Fe$^{3+}$ 공명중심은 기존에 발표된 congruent 조성으로 성장시킨 단결정의 것과는 다른 것으로 밝혀졌다. 또한 Fe$^{3+}$ 이온에 관한 온도의존 공명 흡수선을 분석한 결과 실험 온도 구간에서는 LiTaO$_3$ 단결정의 어떠한 상변화도 없는 것으로 나타났다.

Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 박향숙;방진주;이기정;강종욱;홍광준
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Study on energy of valence-band splitting from photocurrent spectrum of photoconductive $CdGa_2Se_4$ thin films

  • Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.66-66
    • /
    • 2009
  • The photoconductive $CdGa_2Se_4$ layer was grown through the hot wall epitaxy method. From the photocurrent (PC) measurements, the three peaks in the PC spectra were associated with the band-to-band transitions. The PC intensities were observed to decrease with decreasing temperature. The valence-band splitting on $CdGa_2Se_4$ was also observed by means of the PC spectroscopy. The crystal field splitting and the spin orbit splitting turned out to be 0.1604 and 0.4179 eV at 10 K, respectively.

  • PDF

펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth of ZnO thin film by pulsed laser deposition and photocurrent study on the splitting of valance band)

  • 홍광준
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.160-168
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_{2}O_{3}$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_{2}O_{3}$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}1016cm^{-3}$ and $299cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=3.3973 eV-($2.69{\times}10^{-4}$ eV/K)$T^{2}$/(T+463K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{6}$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n = 1.

Hot wall epitaxy법에 의해 성장된 $AgInS_2$ 박막의 광전기적 특성 (Opto-electric properties for the $AgInS_2$ epilayers grown by hot wall epitaxy)

  • 이관교;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.267-270
    • /
    • 2004
  • A silver indium sulfide($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high qualify crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks. are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\ddot{A}cr$, and the spin orbit splitting, $\ddot{A}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_g(T)$, was determined.

  • PDF

Hot Wall Epitaxy(HWE)법에 의한 BaAl2Se4 단결정 박막 성장과 광전도 특성 (Growth and Optical Conductivity Properties for BaAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 정준우;이기정;홍광준
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.404-411
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.

Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성 (Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy)

  • 이상열;홍광준;박진성
    • 센서학회지
    • /
    • 제11권5호
    • /
    • pp.309-318
    • /
    • 2002
  • 수평 전기로에서 $CdIn_2S_4$ 다결정을 합성하여 HWE(Hot Wall Epitaxy)방법으로 $CdIn_2S_4$ 단결정 박막을 반절연성 GaAs (100)기판에 성장시켰다. $CdIn_2S_4$ 단결정 박막의 성장 조건은 증발원의 온도 $630^{\circ}C$, 기판의 온도 $420^{\circ}C$였고 성장 속도는 $0.5\;{\mu}m/hr$였다. $CdIn_2S_4$ 단결정 박막의 결정성의 조사에서 10 K에서 광발광(photoluminescence) 스펙트럼이 463.9 nm (2.6726 eV)에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중 결정 X-선 요동 곡선(DCRC)의 반폭치(FWHM)도 127 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 $9.01{\times}10^{16}/cm^3$, $219\;cm^2/V{\cdot}s$였다. $CdIn_2S_4$/SI(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 Varshni 공식에 따라 계산한 결과 $2.7116eV-(7.74{\times}10^{-4}eV/K)T^2$/(T+434K)이었으며 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting ${\Delta}cr$값이 0.1291 eV이며 spin-orbit ${\Delta}so$값은 0.0248 eV임을 확인하였다. 10K일 때 광전류 봉우리들은 n = 1일때 $A_1$-, $B_1$-와 $C_1$-exciton 봉우리임을 알았다.