• Title/Summary/Keyword: Cryptography communication

Search Result 284, Processing Time 0.034 seconds

Session Key Distribution Scheme in V2I of VANET using Identity-Based Cryptography (VANET의 V2I 환경에서 IBC를 이용한 세션키 분배 기법)

  • Roh, Hyo-Sun;Jung, Sou-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • This paper proposes a session key distribution scheme on non-interactive key distribution algorithm of Identity-based cryptography in V2I of VANET. In the current VANET, IEEE 802.11i is used to provide secure data communication between the vehicle and infrastructure. However, since the 4-way handshake procedure reply when the vehicle handover to another RSU/AP, IEEE 802.11i increases the communication overhead and latency. The proposed scheme using non-interactive key distribution algorithm of Identity-based cryptography provided session key generation and exchange without message exchange and reduced communication overhead and latency than the IEEE 802.11i.

Multiplication optimization technique for Elliptic Curve based sensor network security (Elliptic curve기반 센서네트워크 보안을 위한 곱셈 최적화 기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1836-1842
    • /
    • 2010
  • Sensor network, which is technology to realize the ubiquitous environment, recently, could apply to the field of Mechanic & electronic Security System, Energy management system, Environment monitoring system, Home automation and health care application. However, feature of wireless networking of sensor network is vulnerable to eavesdropping and falsification about message. Presently, PKC(public key cryptography) technique using ECC(elliptic curve cryptography) is used to build up the secure networking over sensor network. ECC is more suitable to sensor having restricted performance than RSA, because it offers equal strength using small size of key. But, for high computation cost, ECC needs to enhance the performance to implement over sensor. In this paper, we propose the optimizing technique for multiplication, core operation in ECC, to accelerate the speed of ECC.

Implementation of Quantum Gates for Binary Field Multiplication of Code based Post Quantum Cryptography (부호 기반 양자 내성 암호의 이진 필드 상에서 곱셈 연산 양자 게이트 구현)

  • Choi, Seung-Joo;Jang, Kyong-Bae;Kwon, Hyuk-Dong;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1044-1051
    • /
    • 2020
  • The age of quantum computers is coming soon. In order to prepare for the upcoming future, the National Institute of Standards and Technology has recruited candidates to set standards for post quantum cryptography to establish a future cryptography standard. The submitted ciphers are expected to be safe from quantum algorithm attacks, but it is necessary to verify that the submitted algorithm is safe from quantum attacks using quantum algorithm even when it is actually operated on a quantum computer. Therefore, in this paper, we investigate an efficient quantum gate implementation for binary field multiplication of code based post quantum cryptography to work on quantum computers. We implemented the binary field multiplication for two field polynomials presented by Classic McEliece and three field polynomials presented by ROLLO in generic algorithm and Karatsuba algorithm.

A Lightweight Hardware Accelerator for Public-Key Cryptography (공개키 암호 구현을 위한 경량 하드웨어 가속기)

  • Sung, Byung-Yoon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1609-1617
    • /
    • 2019
  • Described in this paper is a design of hardware accelerator for implementing public-key cryptographic protocols (PKCPs) based on Elliptic Curve Cryptography (ECC) and RSA. It supports five elliptic curves (ECs) over GF(p) and three key lengths of RSA that are defined by NIST standard. It was designed to support four point operations over ECs and six modular arithmetic operations, making it suitable for hardware implementation of ECC- and RSA-based PKCPs. In order to achieve small-area implementation, a finite field arithmetic circuit was designed with 32-bit data-path, and it adopted word-based Montgomery multiplication algorithm, the Jacobian coordinate system for EC point operations, and the Fermat's little theorem for modular multiplicative inverse. The hardware operation was verified with FPGA device by implementing EC-DH key exchange protocol and RSA operations. It occupied 20,800 gate equivalents and 28 kbits of RAM at 50 MHz clock frequency with 180-nm CMOS cell library, and 1,503 slices and 2 BRAMs in Virtex-5 FPGA device.

A Comparative Study of Twist Property in KSS Curves of Embedding Degree 16 and 18 from the Implementation Perspective

  • Khandaker, Md. Al-Amin;Park, Taehwan;Nogami, Yasuyuki;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Implementation of faster pairing calculation is the basis of efficient pairing-based cryptographic protocol implementation. Generally, pairing is a costly operation carried out over the extension field of degree $k{\geq}12$. But the twist property of the pairing friendly curve allows us to calculate pairing over the sub-field twisted curve, where the extension degree becomes k/d and twist degree d = 2, 3, 4, 6. The calculation cost is reduced substantially by twisting but it makes the discrete logarithm problem easier if the curve parameters are not carefully chosen. Therefore, this paper considers the most recent parameters setting presented by Barbulescu and Duquesne [1] for pairing-based cryptography; that are secure enough for 128-bit security level; to explicitly show the quartic twist (d = 4) and sextic twist (d = 6) mapping between the isomorphic rational point groups for KSS (Kachisa-Schaefer-Scott) curve of embedding degree k = 16 and k = 18, receptively. This paper also evaluates the performance enhancement of the obtained twisted mapping by comparing the elliptic curve scalar multiplications.

EC-ELGAMAL Homomorphic Cryptography based E-voting System (EC-ELGAMAL 준동형 암호화기반 전자투표)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.909-916
    • /
    • 2013
  • Since realization of E-voting system expands participation of voters and efficient count of voting, political and social and technical revolution is possible. However, without secure e-voting system, practical usages are infeasible. In the paper, we propose an e-voting system which is able to open votes in server without decryption during midst process using EC-ELGAMAL homomorphic cryptography. Users ensure anonymity with pseudo id from server and check their voting with Bloom Filter technology. Furthermore, we combine attributes and voters' information, so we can collect information of voter under the condition of anonymity.

Implementation and Analysis of Multi-precision Multiplication for Public Key Cryptography Based on NDK (NDK 기반 공개키 암호를 위한 곱셈기 구현 및 분석)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2347-2354
    • /
    • 2012
  • On Android environment, program development is conducted with JAVA SDK. However, using JAVA, it is operated over virtual machine which shows lower performance in terms of speed than traditional C language programming. The method writes program in C language, which conducts operation efficiently. In the paper, we implement multiplication using NDK and SDK to analyze the public key cryptography over Android environment. In case of SDK, we used BigInteger package and in case of NDK, we used Comb method. Moreover, execution time of arithmetic, branch and call operations over Android environment is compared to understand performance enhancement using NDK package.

Efficient Post-Processing for Quantum Communication Systems (양자 통신 시스템의 효율적 후처리 방식)

  • Lee, Sun Yui;Jung, Kuk Hyun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.7-12
    • /
    • 2014
  • Quantum cryptography is one of the most feasible fields using quantum mechanics. Therefore, quantum cryptography has consistently been researched, and a variety of cryptographic exchange method has been developed, such as BB84, etc. This paper explains a basic concept of quantum communications and quantum key distribution systems using quantum mechanics. Also, it introduces a reason of the development of quantum cryptography and attack scenarios which threaten the security of QKD. Finally, the experiment of this paper simulates quantum key attack by estimating qubit phases through a modeled quantum channel, and discusses needs of post-processing methods for overcoming eavesdropping.

A method for data protection in communication on using cryptography (크립토 크리피를 이용한 정보의 보호 및 전달방법)

  • 최진탁;신승호;이병수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.19
    • /
    • pp.19-24
    • /
    • 1989
  • Because of the rapid growth of communicating with data and Information. The Protection of data which we want nowadays. This paper describes the various data securiconcentrated on adding senders signature with key to csecrecy, authenticity and ease of use.

  • PDF