• Title/Summary/Keyword: Cryptography Technology

Search Result 288, Processing Time 0.032 seconds

A Study on the Cryptography Technology for Computing Stored and Encrypted Information without Key Leakage (키 유출 없이 저장되고 암호화된 정보를 계산할 수 있는 암호기술에 관한 연구)

  • Mun, Hyung-Jin;Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Various cryptographic technologies have been proposed from ancient times and are developing in various ways to ensure the confidentiality of information. Due to exponentially increasing computer power, the encryption key is gradually increasing for security. Technology are being developed; however, security is guaranteed only in a short period of time. With the advent of the 4th Industrial Revolution, encryption technology is required in various fields. Recently, encryption technology using homomorphic encryption has attracted attention. Security threats arise due to the exposure of keys and plain texts used in the decryption processing for the operation of encrypted information. The homomorphic encryption can compute the data of the cipher text and secure process the information without exposing the plain text. When using the homomorphic encryption in processing big data like stored personal information in various services, security threats can be avoided because there is no exposure to key usage and decrypted information.

Bitcoin and the Monetary System Revolution Changes

  • Alotaibi, Leena;Alsalmi, Azhar;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.156-160
    • /
    • 2021
  • Every day brings a new challenge to the humanities. Life nowadays needs accuracy, privacy, integrity, authenticity, and security to run life systems especially the monetary system. Things now differ from previous centuries. Multiple varieties in digital banking have opened the new and most advanced innovations for human beings. The monetary system is going to developed day by day to facilitate the public. Electronic money has amazed the world and gave a challenge to central banking. For this purpose, there will be a need for strict security, information, and confidence. Blockchain technology has opened new gateways. Bitcoin has become the most famous digital currency, which has created a thunderstorm in digital marketing. Blockchain, as a new Financial Technology, has satisfied all the security issues and satisfied doing business in secure ways that encourage investors to invest and keep the world business wheel. Assessment of the sustainability of implementing Bitcoin in financial institutions will be discussed. Every new system has its pros and cons in which a clear vision of what we are about to use can be sought. Through this research paper, a demonstration of the monetary system evolution, the new ways of doing business, some evidence in a form of academic cases will be demonstrated through comparison a table, a suggested method to transfer to the new system in safe mode will be proposed, and a conclusion will be concluded.

Efficient Post-Quantum Secure Network Coding Signatures in the Standard Model

  • Xie, Dong;Peng, HaiPeng;Li, Lixiang;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2427-2445
    • /
    • 2016
  • In contrast to traditional "store-and-forward" routing mechanisms, network coding offers an elegant solution for achieving maximum network throughput. The core idea is that intermediate network nodes linearly combine received data packets so that the destination nodes can decode original files from some authenticated packets. Although network coding has many advantages, especially in wireless sensor network and peer-to-peer network, the encoding mechanism of intermediate nodes also results in some additional security issues. For a powerful adversary who can control arbitrary number of malicious network nodes and can eavesdrop on the entire network, cryptographic signature schemes provide undeniable authentication mechanisms for network nodes. However, with the development of quantum technologies, some existing network coding signature schemes based on some traditional number-theoretic primitives vulnerable to quantum cryptanalysis. In this paper we first present an efficient network coding signature scheme in the standard model using lattice theory, which can be viewed as the most promising tool for designing post-quantum cryptographic protocols. In the security proof, we propose a new method for generating a random lattice and the corresponding trapdoor, which may be used in other cryptographic protocols. Our scheme has many advantages, such as supporting multi-source networks, low computational complexity and low communication overhead.

Embedded-based Power Monitoring Security Module Design (임베디드 전력 모니터링 보안 모듈 설계)

  • Yoon, Chan-Ho;Kim, Gwang-Jun;Jang, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1485-1490
    • /
    • 2013
  • The demonstration project of the electrical grid for Smart grid is progressed, the smart digital appliances AV technology, Smart home energy management technology charging the management function of complex energy for the automation management of air conditioning and heating, humidity and air, the health care technology charging the design of housing for the elderly and disabled and the measurement of individual bio information, and the Smart home security technology dealing with the biometric security and motion sensors, etc. have been studied. The power monitoring terminal which uses a variety of wired and wireless networks and protocol is the target additionally to be considered in addition to the security vulnerabilities that was occurred in the existing terminal. In this research paper, the author analyzes the cryptographic techniques corresponding to the smart meter occurred by the problems that are exposed on the outside which are vulnerable to physical attacks, and intends to propose the design of the security systems for the Smart meter terminal being able to maximize the efficiency of the terminal.

A Study of Data Security System Based PKI on Wireless Internet Environment (무선 인터넷 환경에서의 PKI 기반 데이터 보호 시스템에 대한 연구)

  • Kim, Young-Ho;Chae, Cheol-Joo;Choi, Sang-Wook;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.233-236
    • /
    • 2008
  • Wire wireless integrated service of BcN(Broadband convergence Network) is expanding. Information Security issue is highlighted for opposing attack of getting information illegally on wire wireless network. The user of PKI(Public Key Infrastructure) cipher system among Information security technology receives various security services about authentication, confidentiality, integrity, non-repudiation and access control etc. A mobile client and server are loaded certificate and wireless internet cryptography module for trusted data send receive. And data sends receives to each other after certification process through validity check of certificate. Certificate and data security system is researched through PKI on wireless network environment and data security system in this paper.

  • PDF

A Secure Index Management Scheme for Providing Data Sharing in Cloud Storage

  • Lee, Sun-Ho;Lee, Im-Yeong
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.287-300
    • /
    • 2013
  • Cloud storage is provided as a service in order to keep pace with the increasing use of digital information. It can be used to store data via networks and various devices and is easy to access. Unlike existing removable storage, many users can use cloud storage because it has no storage capacity limit and does not require a storage medium. Cloud storage reliability has become a topic of importance, as many users employ it for saving great volumes of data. For protection against unethical administrators and attackers, a variety of cryptography systems, such as searchable encryption and proxy re-encryption, are being applied to cloud storage systems. However, the existing searchable encryption technology is inconvenient to use in a cloud storage environment where users upload their data. This is because this data is shared with others, as necessary, and the users with whom the data is shared change frequently. In this paper, we propose a searchable re-encryption scheme in which a user can safely share data with others by generating a searchable encryption index and then re-encrypt it.

A Specification-based Intrusion Detection Mechanism for LEACH Protocol (LEACH 프로토콜에 적합한 명세기반 침입탐지 기법)

  • Lee, Yun-Ho;Kang, Jung-Ho;Lee, Soo-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.138-147
    • /
    • 2012
  • With the improvement of wireless communication and embedded technology, WSN is used at various fields. Meanwhile, because WSN is resource constrained, it is more vulnerable than other networks. To solve the security problem of WSN, we can use the traditional secure mechanism like as cryptography and authentication. But the traditional secure mechanism is not enough for all security issues that may be happened in WSN, especially attacks caused by the compromised node. So, we need the IDS as the second secure mechanism for WSN. In this paper, we propose the Specification-based Intrusion Detection Mechanism that makes LEACH, which is one of the clustering routing protocol for WSN, more reliable and safety.

The IPSec Systems on TOE for Gigabit Network (기가비트 네트워크 지원을 위한 TOE 기반 IPSec 시스템)

  • Shin, Chi-Hoon;Kim, Sun-Wook;Park, Kyoung;Kim, Sung-Woon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1035-1038
    • /
    • 2005
  • This paper describes the designs and the implementations of two H/W IPSec Systems, look-aside and inline, on TOE (Transport Offloading Engine). These systems aim for guaranteeing the security of datagram networks while preserving the bandwidth of gigabit networks. The TOE offloads a host CPU from network burdens, so that it makes the gigabit wire speed possible, and then deeper level security architecture of the IPSec guarantees the security of gigabit service network dominated by datagram packets. The focus of this paper is to minimize the TOE's performance degradation caused by the computation-oriented IPSec. The look-aside IPSec system provides a significant improvement in the CPU offload of the IPSec cryptography loads. However, the inline system completely offloads the host CPU from whole IPSec loads, providing significant additional cost saving compared to the look-aside system. In this paper, the implementations of TOE cards including commercial IPSec processors are presented. As the result of performance evaluation with the protocol analyzer, we can get the fact that the inline IPSec system is 8 times faster than the S/W system and 2 times faster than the look-aside system.

  • PDF

Efficient Design and Performance Analysis of a Hardware Right-shift Binary Modular Inversion Algorithm in GF(p)

  • Choi, Piljoo;Lee, Mun-Kyu;Kong, Jeong-Taek;Kim, Dong Kyue
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.425-437
    • /
    • 2017
  • For efficient hardware (HW) implementation of elliptic curve cryptography (ECC), various sub-modules for the underlying finite field operations should be implemented efficiently. Among these sub-modules, modular inversion (MI) requires the most computation; therefore, its performance might be a dominant factor of the overall performance of an ECC module. To determine the most efficient MI algorithm for an HW ECC module, we implement various classes of MI algorithms and analyze their performance. In contrast to the common belief in previous research, our results show that the right-shift binary inversion (RS) algorithm performs well when implemented in hardware. In addition, we present optimization methods to reduce the area overhead and improve the speed of the RS algorithm. By applying these methods, we propose a new RS-variant that is both fast and compact. The proposed MI module is more than twice as fast as the other two classes of MI: shifting Euclidean (SE) and left-shift binary inversion (LS) algorithms. It consumes only 15% more area and even 5% less area than SE and LS, respectively. Finally, we show that how our new method can be applied to optimize an HW ECC module.

Modified Multi-bit Shifting Algorithm in Multiplication Inversion Problems (개선된 역수연산에서의 멀티 쉬프팅 알고리즘)

  • Jang, In-Joo;Yoo, Hyeong-Seon
    • The Journal of Society for e-Business Studies
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • This paper proposes an efficient inversion algorithm for Galois field GF(2n) by using a modified multi-bit shifting method based on the Montgomery algorithm. It is well known that the efficiency of arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. An inversion algorithm, which modifies a multi-bit shifting based on the Montgomery algorithm, is studied. Trinomials and AOPs (all-one polynomials) are tested to calculate the inverse. It is shown that the suggested inversion algorithm reduces the computation time up to 26 % of the forgoing multi-bit shifting algorithm. The modified algorithm can be applied in various applications and is easy to implement.

  • PDF