• Title/Summary/Keyword: Cryptography

Search Result 972, Processing Time 0.03 seconds

A Node Mobility-based Adaptive Route Optimization Scheme for Hierarchical Mobile IPv6 Networks (노드 이동성을 고려한 계층적 이동 IPv6 네트워크에서의 적응적 경로 최적화 방안)

  • 황승희;이보경;황종선;한연희
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • The secret sharing is the basic concept of the threshold cryptosystem and has an important position in the modern cryptography. At 1995, Jarecki proposed the proactive secret sharing to be a solution of existing the mobile adversary and also proposed the share renewal scheme for (k, n) threshold scheme. For n participants in the protocol, his method needs O($n^2$) modular exponentiation per one participant. It is very high computational cost and is not fit for the scalable cryptosystem. In this paper, we propose the efficient share renewal scheme that need only O(n) modular exponentiation per participant. And we prove our scheme is secure if less that ${\frac}\frac{1}{2}n-1$ adversaries exist and they static adversary.

A Hardware Design Space Exploration toward Low-Area and High-Performance Architecture for the 128-bit Block Cipher Algorithm SEED (128-비트 블록 암호화 알고리즘 SEED의 저면적 고성능 하드웨어 구조를 위한 하드웨어 설계 공간 탐색)

  • Yi, Kang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.231-239
    • /
    • 2007
  • This paper presents the trade-off relationship between area and performance in the hardware design space exploration for the Korean national standard 128-bit block cipher algorithm SEED. In this paper, we compare the following four hardware design types of SEED algorithm : (1) Design 1 that is 16 round fully pipelining approach, (2) Design 2 that is a one round looping approach, (3) Design 3 that is a G function sharing and looping approach, and (4) Design 4 that is one round with internal 3 stage pipelining approach. The Design 1, Design 2, and Design 3 are the existing design approaches while the Design 4 is the newly proposed design in this paper. Our new design employs the pipeline between three G-functions and adders consisting of a F function, which results in the less area requirement than Design 2 and achieves the higher performance than Design 2 and Design 3 due to pipelining and module sharing techniques. We design and implement all the comparing four approaches with real hardware targeting FPGA for the purpose of exact performance and area analysis. The experimental results show that Design 4 has the highest performance except Design 1 which pursues very aggressive parallelism at the expanse of area. Our proposed design (Design 4) shows the best throughput/area ratio among all the alternatives by 2.8 times. Therefore, our new design for SEED is the most efficient design comparing with the existing designs.

Efficient Session Management mechanism applied Key Recovery technique in IPSec (IPSec에서 키 복구 기술을 적용한 효율적인 연결 관리 메커니즘)

  • Kim, Jeong-Beom;Lee, Yun-Jeong;Park, Nam-Seop;Kim, Tae-Yun
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.775-782
    • /
    • 2001
  • Recently the use of Linux OS is increasing to tremendous figures. But due to the fact that Linux is distributed on an open-source policy, the need of security is an upcoming question which leads to widespread development of security on a Linux based environment. Cryptography, however, can cause various problems because of difficulty of key management. A lot of researchers have been concentrating on the key recovery technique to eliminate the reverse effect of using these kinds of security and to promote positive aspects of using it. In this thesis I am suggesting an mechanism based on the key recovery technique, as a method to save time in recovery and resetting a disconnection between two end-users through IPSec (IP Security) protocols in a VPN (Virtual Private Network) environment. The main idea of the newly suggested mechanism, KRFSH (Key Recovery Field Storage Header), is to store the information of the session in advance for the case of losing the session information essential to establish a tunnel connection between a SG and a host in the VPN environment, and so if necessary to use the pre-stored information for recovery. This mechanism is loaded on the IPSec based FreeS/WAN program (Linux environment), and so the VPN problem mentioned above is resolved.

  • PDF

Blockchain Based Financial Portfolio Management Using A3C (A3C를 활용한 블록체인 기반 금융 자산 포트폴리오 관리)

  • Kim, Ju-Bong;Heo, Joo-Seong;Lim, Hyun-Kyo;Kwon, Do-Hyung;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • In the financial investment management strategy, the distributed investment selecting and combining various financial assets is called portfolio management theory. In recent years, the blockchain based financial assets, such as cryptocurrencies, have been traded on several well-known exchanges, and an efficient portfolio management approach is required in order for investors to steadily raise their return on investment in cryptocurrencies. On the other hand, deep learning has shown remarkable results in various fields, and research on application of deep reinforcement learning algorithm to portfolio management has begun. In this paper, we propose an efficient financial portfolio investment management method based on Asynchronous Advantage Actor-Critic (A3C), which is a representative asynchronous reinforcement learning algorithm. In addition, since the conventional cross-entropy function can not be applied to portfolio management, we propose a proper method where the existing cross-entropy is modified to fit the portfolio investment method. Finally, we compare the proposed A3C model with the existing reinforcement learning based cryptography portfolio investment algorithm, and prove that the performance of the proposed A3C model is better than the existing one.

An Addition-Chain Heuristics and Two Modular Multiplication Algorithms for Fast Modular Exponentiation (모듈라 멱승 연산의 빠른 수행을 위한 덧셈사슬 휴리스틱과 모듈라 곱셈 알고리즘들)

  • 홍성민;오상엽;윤현수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.2
    • /
    • pp.73-92
    • /
    • 1997
  • A modular exponentiation( E$M^{$=varepsilon$}$mod N) is one of the most important operations in Public-key cryptography. However, it takes much time because the modular exponentiation deals with very large operands as 512-bit integers. Modular exponentiation is composed of repetition of modular multiplications, and the number of repetition is the same as the length of the addition-chain of the exponent(E). Therefore, we can reduce the execution time of modular exponentiation by finding shorter addition-chain(i.e. reducing the number of repetitions) or by reducing the execution time of each modular multiplication. In this paper, we propose an addition-chain heuristics and two fast modular multiplication algorithms. Of two modular multiplication algorithms, one is for modular multiplication between different integers, and the other is for modular squaring. The proposed addition-chain heuristics finds the shortest addition-chain among exisiting algorithms. Two proposed modular multiplication algorithms require single-precision multiplications fewer than 1/2 times of those required for previous algorithms. Implementing on PC, proposed algorithms reduce execution times by 30-50% compared with the Montgomery algorithm, which is the best among previous algorithms.

A Scalable Montgomery Modular Multiplier (확장 가능형 몽고메리 모듈러 곱셈기)

  • Choi, Jun-Baek;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.625-633
    • /
    • 2021
  • This paper describes a scalable architecture for flexible hardware implementation of Montgomery modular multiplication. Our scalable modular multiplier architecture, which is based on a one-dimensional array of processing elements (PEs), performs word parallel operation and allows us to adjust computational performance and hardware complexity depending on the number of PEs used, NPE. Based on the proposed architecture, we designed a scalable Montgomery modular multiplier (sMM) core supporting eight field sizes defined in SEC2. Synthesized with 180-nm CMOS cell library, our sMM core was implemented with 38,317 gate equivalents (GEs) and 139,390 GEs for NPE=1 and NPE=8, respectively. When operating with a 100 MHz clock, it was evaluated that 256-bit modular multiplications of 0.57 million times/sec for NPE=1 and 3.5 million times/sec for NPE=8 can be computed. Our sMM core has the advantage of enabling an optimized implementation by determining the number of PEs to be used in consideration of computational performance and hardware resources required in application fields, and it can be used as an IP (intellectual property) in scalable hardware design of elliptic curve cryptography (ECC).

Trend Forecasting and Analysis of Quantum Computer Technology (양자 컴퓨터 기술 트렌드 예측과 분석)

  • Cha, Eunju;Chang, Byeong-Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.35-44
    • /
    • 2022
  • In this study, we analyze and forecast quantum computer technology trends. Previous research has been mainly focused on application fields centered on technology for quantum computer technology trends analysis. Therefore, this paper analyzes important quantum computer technologies and performs future signal detection and prediction, for a more market driven technical analysis and prediction. As analyzing words used in news articles to identify rapidly changing market changes and public interest. This paper extends conference presentation of Cha & Chang (2022). The research is conducted by collecting domestic news articles from 2019 to 2021. First, we organize the main keywords through text mining. Next, we explore future quantum computer technologies through analysis of Term Frequency - Inverse Document Frequency(TF-IDF), Key Issue Map(KIM), and Key Emergence Map (KEM). Finally, the relationship between future technologies and supply and demand is identified through random forests, decision trees, and correlation analysis. As results of the study, the interest in artificial intelligence was the highest in frequency analysis, keyword diffusion and visibility analysis. In terms of cyber-security, the rate of mention in news articles is getting overwhelmingly higher than that of other technologies. Quantum communication, resistant cryptography, and augmented reality also showed a high rate of increase in interest. These results show that the expectation is high for applying trend technology in the market. The results of this study can be applied to identifying areas of interest in the quantum computer market and establishing a response system related to technology investment.

Relative Importance Analysis of Management Level Diagnosis for Consignee's Personal Information Protection (수탁사 개인정보 관리 수준 점검 항목의 상대적 중요도 분석)

  • Im, DongSung;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Recently ICT, new technologies such as IoT, Cloud, and Artificial Intelligence are changing the information society explosively. But personal information leakage incidents of consignee's company are increasing more and more because of the expansion of consignment business and the latest threats such as Ransomware and APT. Therefore, in order to strengthen the security of consignee's company, this study derived the checklists through the analysis of the status such as the feature of consignment and the security standard management system and precedent research. It also analyzed laws related to consignment. Finally we found out the relative importance of checklists after it was applied to proposed AHP(Analytic Hierarchy Process) Model. Relative importance was ranked as establishment of an internal administration plan, privacy cryptography, life cycle, access authority management and so on. The purpose of this study is to reduce the risk of leakage of customer information and improve the level of personal information protection management of the consignee by deriving the check items required in handling personal information of consignee and demonstrating the model. If the inspection activities are performed considering the relative importance of the checklist items, the effectiveness of the input time and cost will be enhanced.

A Study on Creating WBC-AES Dummy LUT as a Countermeasure against DCA (차분 계산 분석 대응을 위한 WBC-AES Dummy LUT 생성 방안 연구)

  • Minyeong Choi;Byoungjin Seok;Seunghee Seo;Changhoon Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.363-374
    • /
    • 2023
  • A white-box environment refers to a situation where the internal information of an algorithm is disclosed. The AES white-box encryption was first announced in 2002, and in 2016, a side-channel analysis for white-box encryption called Differential Computation Analysis (DCA) was proposed. DCA analysis is a powerful side-channel attack technique that uses the memory information of white-box encryption as side-channel information to find the key. Although various countermeasure studies against DCA have been published domestically and internationally, there were no evaluated or analyzed results from experiments applying the hiding technique using dummy operations to DCA analysis. Therefore, in this paper, we insert LU T-shaped dummy operations into the WBC-AES algorithm proposed by S. Chow in 2002 and quantitatively evaluate the degree of change in DCA analysis response depending on the size of the dummy. Compared to the DCA analysis proposed in 2016, which recovers a total of 16 bytes of the key, the countermeasure proposed in this paper was unable to recover up to 11 bytes of the key as the size of the dummy decreased, resulting in a maximum decrease in attack performance of about 68.8%, which is about 31.2% lower than the existing attack performance. The countermeasure proposed in this paper confirms that the attack performance significantly decreases as smaller dummy sizes are inserted and can be applied in various fields.

A Performance Comparison of the Mobile Agent Model with the Client-Server Model under Security Conditions (보안 서비스를 고려한 이동 에이전트 모델과 클라이언트-서버 모델의 성능 비교)

  • Han, Seung-Wan;Jeong, Ki-Moon;Park, Seung-Bae;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.286-298
    • /
    • 2002
  • The Remote Procedure Call(RPC) has been traditionally used for Inter Process Communication(IPC) among precesses in distributed computing environment. As distributed applications have been complicated more and more, the Mobile Agent paradigm for IPC is emerged. Because there are some paradigms for IPC, researches to evaluate and compare the performance of each paradigm are issued recently. But the performance models used in the previous research did not reflect real distributed computing environment correctly, because they did not consider the evacuation elements for providing security services. Since real distributed environment is open, it is very vulnerable to a variety of attacks. In order to execute applications securely in distributed computing environment, security services which protect applications and information against the attacks must be considered. In this paper, we evaluate and compare the performance of the Remote Procedure Call with that of the Mobile Agent in IPC paradigms. We examine security services to execute applications securely, and propose new performance models considering those services. We design performance models, which describe information retrieval system through N database services, using Petri Net. We compare the performance of two paradigms by assigning numerical values to parameters and measuring the execution time of two paradigms. In this paper, the comparison of two performance models with security services for secure communication shows the results that the execution time of the Remote Procedure Call performance model is sharply increased because of many communications with the high cryptography mechanism between hosts, and that the execution time of the Mobile Agent model is gradually increased because the Mobile Agent paradigm can reduce the quantity of the communications between hosts.