• Title/Summary/Keyword: Cryomodule

Search Result 7, Processing Time 0.021 seconds

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae;Kim, Youngkwon;Lee, Min Ki;Park, Gunn-Tae;Kim, Wookang
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.47-50
    • /
    • 2016
  • Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

Cool-down test of HWR cryomodule for RAON

  • Kim, Y.;Lee, M.;Jo, Y.W.;Choi, J.W.;Kim, H.;Kim, W.K.;Kim, H.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.43-46
    • /
    • 2015
  • The heavy ion accelerator that will be built in Daejeon utilizes four types of superconducting cavities. Cryomodules holding the superconducting cavities in them supply thermal insulation for cavities operating in 4.3 K or 2.1 K. A Prototype of cryomodule which holds two HWR (Half Wave Resonator) cavities was fabricated and tested. Since the operating temperature of the HWR is 2.1 K, the superfluid helium was generated with warm vacuum pumping system. The cyromodule was successfully cooled down below lambda point temperature of helium and any detectable leak was not observed during the test. The static thermal load at 4.2 K was measured. The result and the experience for the cool-down below lambda point of helium are reported in this paper.

Conceptual design of cryomodules for RAON

  • Kim, Y.;Lee, M.K.;Kim, W.K.;Jang, H.M.;Choi, C.J.;Jo, Y.W.;Kim, H.J.;Jeon, D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • The heavy ion accelerator that will be built in Daejeon, Korea utilizes superconducting cavities operating in 2 K. The cavities are QWR (quarter wave resonator), HWR (half wave resonator), SSR1 (sing spoke resonator1) and SSR2. The main role of the cryomodule is supplying thermal insulation for cryogenic operation of the cavities and maintaining cavities' alignment. Thermal and structural consideration such as thermal load by heat leak and heat generation, cryogenic fluid management, thermal contraction, and so on. This paper describes detailed design considerations and current results have being done including thermal load estimation, cryogenic flow piping, pressure relief system, and so on.

Introduction to Helium Leak Detection Techniques for Cryogenic Systems

  • Kim, Heetae;Chang, Yong Sik;Kim, Wookang;Jo, Yong Woo;Kim, Hyung Jin
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.77-83
    • /
    • 2015
  • Many welding processes are performed to construct cryogenic system. Leak-tight for the cryogenic system is required at low temperature environment. Helium leak detection techniques are commonly used to find leak for the cryogenic system. The helium leak detection techniques for spraying, sniffing and pressurizing techniques are introduced. High vacuum is also necessary to use helium leak detector. So, types of fluid flow, effective temperature, conductance and pumping speed are introduced for vacuum pumping. Leak test procedure is shown for pipe welding, cryomodule and low temperature test. Cryogenic seals which include copper gasket, helicoflex gasket and indium are investigated.

Flow performance of cryomodules in C-ADS Injector II

  • WAN, Yu-Qin;HAN, Yan-Ning;Zhang, Jun-Hui;Li, Chao
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.74-78
    • /
    • 2022
  • Two β=0.10 cryomodules are required for the China Accelerator Driven Subcritical System (C-ADS) injector II accelerator. Flow design is of great importance in the performance of cryomodules, including thermal design, flow distribution, pressure drop and so on. This paper will study convection heat transfer of helium and relation among the pipe diameter, mass flow rate and Reynolds number. Furthermore, the influence of flow geometries on pressure drop and flow distribution will also be done. It was found that the theoretical flow distribution were in good agreement with the experimental data.

Temperature Measurement Techniques for RAON Cryomodule

  • Kim, Heetae;Jung, Yoochul;Jo, Yong Woo;Lee, Min Ki;Choi, Jong Wan;Kim, Youngkwon;Kim, Juwan;Paeng, Won-Gi;Kim, Moo Sang;Jung, Hoechun;Kwon, Young Kwan
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.30-34
    • /
    • 2018
  • Conducting and semiconducting temperature sensors are calibrated and applied to cryomodules. The definition of temperature is introduced and the pressure in vacuum is shown as a function of temperature. The resistance of Drude model is shown as a function of carrier density and mean free path. Temperature sensors are calibrated with Physical Property Measurement System (PPMS). The temperature sensors are applied to measure temperature accurately in RAON cryomodules.

Modeling and simulation of RAON cryogenic system using EcosimPro

  • Byeongchang, Byeon;Bokuem, Kim;Denis, Groshev;Sangkwon, Jeong;Taekyung, Ki;Lingxue, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.59-64
    • /
    • 2022
  • The cryogenic system of RAON which is Korea's first heavy ion accelerator was numerically modeled and simulated. EcosimPro which is widely used off-the-shelf numerical software for a large scale cryogenic system was used for the simulation. The model of SRF TF cryogenic system, which is the testbed of cryomodule, was firstly established. The integrity of system of SRF TF was confirmed by comparison of simulation and experimental results. The cool-down strategy to minimize the thermal stress of the cavity was simulated and an optimal strategy was established. In addition, the influence of valve and pump control parameters on the cooling time was investigated, and optimal control parameters were also derived. The cryogenic system of SCL3 that is a low-energy acceleration section including 55 cryomodules, valve boxes, and helium supply lines was also modeled. The soundness of the thermal shield system and interlock system of SCL3 was investigated.