• Title/Summary/Keyword: Cryogenic material

Search Result 180, Processing Time 0.027 seconds

The Complete Mitochondrial Genome of the Fourhorn Sculpin Triglopsis quadricornis (Perciformes, Cottidae) from Sirius Passet, North Greenland

  • Kim, Bo-Mi;Kihm, Ji-Hoon;Park, Tae-Yoon S.
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.371-374
    • /
    • 2021
  • Triglopsis quadricornis Linnaeus, 1758 (Cottidae) is distributed in the Atlantic and Arctic and has four unique bony protuberances on its head. Here, we report the complete, circular, and annotated mitochondrial genome of T. quadricornis. The complete T. quadricornis mitochondrion was sequenced by high-throughput Illumina HiSeq platform. The sequences are 16,736 bp in size and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, a control region, and large and small ribosomal subunits. The overall genomic structure of T. quadricornis mitochondrion was conserved with the gene arrangement of Megalocottus and Myoxocephalus species, and phylogenetic analysis supports their sister relationships. Most PCGs consist of TAA or TAG as a termination codon, whereas COII, ND4, and CYTB have T-- as a stop codon. This complete mitochondrial DNA information of T. quadricornis will provide an essential genomic resource to elucidate the phylogenetic relationship and evolutionary history of the family Cottidae.

Hydrogen Isotope Separation by using Zeolitic lmidazolate Frameworks (ZIF-11) (ZIF-11을 이용한 수소 동위원소 분리)

  • Lee, Seulji;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.655-659
    • /
    • 2020
  • Hydrogen isotopes (i.e. deuterium and tritium) are supplied to the tokamak in the International Thermonuclear Experimental Reactor (ITER) fuel cycle. One important part of the ITER fuel cycle is the recycling of unused fuel back to the tokamak, as almost 99 % of fuel is unburned during fusion reaction. For this, cryogenic distillation has been used in the isotope separation system (ISS) of ITER, but this technique tends to be energy-intensive and to have low selectivity (typically below 1.5 at 24 K). Recently, efficient isotope separation by porous materials has been reported in the so-called quantum sieving process. Hence, in this study, hydrogen isotope adsorption behavior is studied using chemically stable ZIF-11. At low temperature (40 K ~ 70 K), the adsorption increases and the sorption hysteresis becomes stronger as the temperature increases to 70K. Molar ratio of deuterium to hydrogen based on the isotherms shows the highest (max. 14) ratio at 50 K, confirming the possibility of use as a potential isotope separation material.

Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank (IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가)

  • Park, Heewoo;Park, Jinseong;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

A study on the properties of SmBCO coated conductors with stabilizer tape (SmBCO 고온 초전도 선재의 안정화재 특성)

  • Kim, Tae-Hyung;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Song, Kyu-Jeong;Ha, Hong-Soo;Lee, Nam-Jin;Park, Kyung-Chae;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.9-12
    • /
    • 2007
  • In this study. we searched for the mechanical and electrical properties of laminated coated conductors with stabilizer tape. Stabilizer tape plays a role for mechanical and electrical stability and environmental protection. Cu material stabilizer was laminated to Ag capping layer on SmBCO conductor layer. This architecture allows the wire to meet operational requirements including the stressless at cryogenic temperature and winding tension as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. First, we have experimentally studied mechanical bonding properties of the laminated Cu stabilizers on SmBCO coated conductors. We have laminated SmBCO coated conductors by continuous dipping soldering process, Second, we have investigated electrical properties of the SmBCO coated conductors with stabilizer lamination. We evaluated bonding properties, peeling strength and critical current for laminated SmBCO coated conductors with Cu stabilizers.

A Study on the Application of LED at Ultra-low Temperature (극저온에서 LED 응용에 관한 연구)

  • Ha, Hee-Ju;Kim, Jin-Wook;Kim, Sun-Jae;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.600-605
    • /
    • 2014
  • The interest in development on luminaires which are available up to $-52^{\circ}C$ is surging as demands in vessels navigating a north pole route increase. A conventional incandescent lamp used in vessels is operated stably at $-52^{\circ}C$, but many countries including Korea have eliminated the use of incandescent lamps gradually because of its low luminous efficacy. In this paper, therefore, to develop the LED luminaires with high-efficiency, long lifetime that enables to substitute for incandescent lamp, it has studied about cryogenic characteristics of LED packages, bulbs, driving circuit and power supply. This experiments were carried out according to standards IEC 60945-8.4.1. Temperature range is from $-60^{\circ}C$ to $25^{\circ}C$, and the light output depending on ambient temperature. It showed that, based on $25^{\circ}C$, light output of a CFL decreased by 80% of CFL at $-20^{\circ}C$ while each increased 12% of LED bulbs and 16~19% of LED packages at $-60^{\circ}C$.

Design and Fabrication of Full-Scale Regenerative Cooling Combustion Chamber (${\varepsilon}$=12) of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 재생냉각 연소기(확대비 12)의 설계 및 제작)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.114-118
    • /
    • 2007
  • Design and fabrication of a 30-tonf-class full-scale regenerative cooling combustion chamber of a liquid rocket engine for a ground hot firing test are described. It has chamber pressure of 60 bar and nozzle expansion ration of 12 and manufactured to have a single welded structure of· the mixing head and the chamber. The material of the mixing head is STS316L which has excellent mechanical property in cryogenic condition. The chamber comprise of the cylinder, nozzle throat, and 1st/2nd nozzle parts. The material of the inner jacket is copper alloy/STS329J1/STS316L and that of the outer jacket is STS329J1. The components of· the combustor were manufactured by mechanical processing including lathing, milling, MCT, rolling and pressing. The machined components were integrated to a single body by means of general welding, electron beam welding(EBW), and brazing.

  • PDF

The Homogeneity and Short-term Stability Test of Bio-matrix Reference Material for Total Mercury Analysis of Freshwater Fish (담수 어류 총수은 분석용 생물 표준물질 균질성, 안정성 시험평가)

  • Lee, Soo Yong;Lee, Jangho;Chung, David;Shim, Kyu-Young;Lee, Ha-Eun;Park, Ki-Wan
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1033-1040
    • /
    • 2019
  • The National Environmental Specimen Bank (NESB) has set up a plan to develop reference materials in the facility for assuring analytical quality and validating analytical methods for its monitoring samples. Some of the crucial characteristics that reference materials must consist of are homogeneity and stability of both intra and inter-bottles. In this study, we examined the homogeneity and stability of cryogenically-milled muscle samples, from Common Carp (Cyprinus carpio) for total mercury. Homogeneity was tested using ANOVA analysis and regression analysis was used to test short-term stability. The variations of total mercury concentration did not significantly differ between the intra and the inter-bottle (F=0.8, p=0.37). Additionally, relative standard deviation of the total mercury concentration showed low values (2.28%). For the short-term stability test, total mercury variations were not statistically significant as demonstrated by the result of the regression analysis (F ratio = 3.11, p = 0.18). This suggests that the cryogenic-milling process has statistically proven the degree of homogeneity and short-term stability for samples of carp muscles in the chemical analysis for total mercury.

Analysis of Thermomechanical Properties Considering the Thermal Expansion Anisotropy of Membrane-Type Fiber-Reinforced Composite Material (멤브레인 형 섬유강화 복합재료의 열팽창 이방성을 고려한 열 기계적 특성 분석)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The membrane-type Liquefied Natural Gas (LNG) cargo tank is equipped with a double barrier to seal the LNG, of which the secondary barrier serves to prevent LNG leakage and mainly uses fiber-reinforced composite materials. However, the composite materials have thermal expansion anisotropy, which deteriorates shape distortion and mechanical performance due to repeated thermal loads caused by temperature changes between cryogenic and ambient during the unloading of LNG. Therefore, in this study, the longitudinal thermal expansion characteristics of the composite materials were obtained using a vertical thermo-mechanical analyzer, and the elastic modulus was obtained through the tensile test for each temperature to perform thermal load analysis for each direction. This is considered that it is useful to secure reliability from the viewpoint of the design of materials for a LNG cargo hold.

Homogeneity Test on Bio-Matrix Reference Material for Chemical Analysis of Environmental Pollutants (환경 오염물질 분석용 생물 표준물질 균질성 시험평가 연구)

  • Lee, Jangho;Chung, David;Choi, Jeong-Heui;Lee, Jongchun;Lee, Soo Yong
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1271-1277
    • /
    • 2018
  • The National Environmental Specimen Bank (NESB) has been sampling and cryogenically preserving various wildlife specimens to monitor bio-accumulations of chemical pollutants since 2010. Recently, the NESB set up a plan to develop reference materials at their facility to assure the analytical quality of and validate the analytical methods for their monitoring samples. One of the crucial characteristics of reference materials is intra- and inter-bottle homogeneity. In this study, we used ANOVA for total mercury concentrations in some samples to validate their homogeneities after milling and homogenization. We examined the intra- and inter-bottle homogeneities of two cryogenically-milled samples (Korean mussel (Mytilus coruscus) and black-tailed gull's egg (Larus crassirostris). The variations in the total mercury concentrations were not significantly different intra- and inter-bottle (mussel: F=0.74, p=0.67; gull egg: F=1.96, p=0.10). Additionally, the relative standard deviations of the total mercury concentrations showed low values (mussel: 2.02%, gull egg: 1.78%). Therefore, the cryogenic-milling process statistically proves the homogeneity of the materials of mussels and sea gull eggs for chemical analysis for total mercury.

Study on the Stability of Biotin-containing Nano-liposome (바이오틴 함유 나노리포좀의 안정성에 관한 연구)

  • Yang, Seong Jun;Kim, Tae Yang;Lee, Chun Mong;Lee, Kwang Sik;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • This study utilized nano-liposomes for the purpose of stabilizing and increasing the solubility of biotin, a water-soluble active material with low solubility. The particle size, zeta potential, and polydispersity index were confirmed with a nano zetasizer. It was possible to manufacture nano liposomes at 100 to 250 nm of particle size and -80 to -30 mV of zeta potential. Dialysis membrane method (DMM) was used to measure the capsulation efficiency of biotin in biotin nano-liposomes, and results showed that pH increased biotin nano-liposomes had higher capsulation efficiency than normal biotin nano-liposome. Through this experiment, it was confirmed that the pH has a great influence on the stability of biotin nano-liposomes. In vitro franz diffusion cell method was used to measure in vitro skin absorption rate of biotin nano-liposomes. The shape of the formulation and biotin solubility in nano-liposome was observed by cryogenic transmission electron microscopy (cryo-TEM). Through this study, we confirmed that biotin, which is introduced as closely related to hair health, can be incorporated into a nano-liposome drug delivery system, to make biotin nano-liposome with improved solubility and precipitation problems.