• Title/Summary/Keyword: Crushing strength

Search Result 216, Processing Time 0.026 seconds

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass (표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구)

  • Suh, Chang-Min;Chung, Seong-Muk;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

Influences of Wet-Pressing Types on Internal Structure of Paper (습부압착 방식이 종이의 내부구조에 미치는 영향)

  • Lee Jin-Ho;Park Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.32-37
    • /
    • 2005
  • To Increase the productivity of a paper machine, the maximization of the machine speed is a kind of simple way As the machine speed increases, more intense wet pressing is required to persist the outlet consistency of press part and reduce the water removal of dryer part. With more intense pressing, there are concerns that the quality of paper will be affected. This study was carried out to evaluate the influence of wet-pressing on internal structure of paper, The nip pressure at the first and third nip in triple nip press was controlled. Paper structures, strength properties and pore properties were evaluated. As a result, first nip pressure more strongly influenced the paper structural properties than third nip pressure in triple nip pressing condition. Because of the high water content and low wet-web strength of paper web in first nip, increasing the first nip pressure induced the incipient crushing of wet-web and then caused a potential of web break during the following coating or printing processes.

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

Unified Method for Nonlinear Finite Element Analysis of RC Planar Members (통합방법을 이용한 철근콘크리트부재의 비선형 유한요소해석)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.133-144
    • /
    • 1997
  • Concrete plasticity models fol the analysis of reinforced concrete members in plane stress are studied. The proposed plasticity model for reinforced concrete provides a unified approach combining plasticity theory and damage models. It addresses strength mhancement under rnultiaxial compression. and tensile cracking damage. The model uses multiple failure criteria for compressive crushing and tensile cracking. For tensile cracking behavior. rotating-crack and fixed-crack plasticity models are compared. As crushing failure criterion, the Drucker-Prager and the von Mises models are used for comparison. The model uses now and existing damnge models fbr tension softening, tension stiffening. and compression softening dup to tensilt. cracking. Finite element analyses using the unified method are compatxd with existing rxpcrimcntal r.esults. To vei.ify the proposcd crushing and cracking plasticity models, the experiments have load capacities govc11.nc.d either by compressive crushing of'concrete or by yi~lding of' reinforcing steel.

Earthquake-Resistance of Slender Shear Wall with No Boundary Confinement (단부 횡보강이 없는 세장한 전단벽의 내진성능)

  • 박홍근;강수민;조봉호;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.47-57
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender shear walls with no boundary confinement that are principal structural members of high0rise bearing wall buildings. 1/3 scale specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were tested to investigate strength, ductility, capacity of energy dissipation, and strain distribution, The experimental results show that the slender shear walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, much less than 0.004 being commonly used for estimation of ductility. This result indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from the neutral axis to the extreme compressive fiber.

On the Dissipation Energy of a Tapered Box Column (경사진 상자형 기둥의 압괴에너지 해석)

  • J.M. Choung;J.W. Lee;S.J. Hong;Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.97-104
    • /
    • 1995
  • A study on the structural dissipation energy and crushing strong is presented for the axially compressed straight square box column and off-axially compressed tapered box column. A new formula on the energy dissipation and crushing strength of the tapered box column is proposed, where the tapered box column is replaced by the equivalent straight square box column. It is seen that the theoretical solutions agree well with experimental results.

  • PDF

Design for moment redistribution in FRP plated RC beams

  • Oehlers, Deric John;Hasketta, Matthew;Mohamed Ali, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.697-714
    • /
    • 2011
  • Assessing the ductility of reinforced concrete sections and members has been a complex and intractable problem for many years. Given the complexity in estimating ductility, members are often designed specifically for strength whilst ductility is provided implicitly through the use of ductile steel reinforcing bars and by ensuring that concrete crushing provides the ultimate limit state. As such, the empirical hinge length and neutral axis depth approaches have been sufficient to estimate ductility and moment redistribution within the bounds of the test regimes from which they were derived. However, being empirical, these methods do not have a sound structural mechanics background and consequently have severe limitations when brittle materials are used and when concrete crushing may not occur. Structural mechanics based approaches to estimating rotational capacities and rotation requirements for given amounts of moment redistribution have shown that FRP plated reinforced concrete (RC) sections can have significant moment redistribution capacities. In this paper, the concept of moment redistribution in beams is explained and it is shown specifically how an existing RC member can be retrofitted with FRP plates for both strength and ductility requirements. Furthermore, it is also shown how ductility through moment redistribution can be used to maximise the increase in strength of a member. The concept of primary and secondary hinges is also introduced and it is shown how the response of the non-hinge region influences the redistribution capacity of the primary hinges, and that for maximum moment redistribution to occur the non-hinge region needs to remain elastic.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

Effects of vibration due to concrete crusher on bond strength of latex-modified concrete (LMC) (파쇄기 진동이 Latex-modified concrete (LMC)의 부착강도에 미치는 영향)

  • Cha, Hun;Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Kyeong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.9-10
    • /
    • 2014
  • Cracks on the surface of latex-modified concrete using ready mix concrete (R-LMC) are attributable to its sensitivity to air temperature, relative humidity and wind velocity. Insufficient curing under the windy condition causes plastic shrinkage cracks. The cracked areas should be replaced to prevent development of larger cracks. This paper investigated how the vibration resulted from crushing concrete for replacement of the partial cracked area affects bond strength of R-LMC at early age. To analyze bond strength of R-LMC, the commercial Finite Element (FE) program, ABAQUS Standard/Implicit version 6.12 was used, and bond strength was tested by ASTM C1583-04. The real vibration was applied to this FE model using an acceleration measurement equipment.

  • PDF