• Title/Summary/Keyword: Crushed Sand

Search Result 289, Processing Time 0.034 seconds

Study on the Properties of Concrete according to the Grading of Crushed Stone (부순 굵은골재의 입도에 따른 콘크리트의 특성에 관한 연구)

  • Choi Se Jin;Lee Seong Yeon;Yeo Byung-Chul;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.213-216
    • /
    • 2004
  • Aggregate occupies about 70 to 80 percent by volume in concrete as skeleton of concrete, but recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, in 2002, the using ratio of crushed stone occupies about $97\%$ of whole coarse aggregate, and ratio of crushed sand occupies about $18.3\%$ of whole fine aggregate. This is an experimental study to compare and analyze the properties of concrete according to the grading of crushed stone to improve quality and mix design of concrete using crushed stone. According to results, it was found that grading level of crushed stone in the range of G42 to G60 was better than any other grading level in terms of fluidity and compressive strength. And it is considered to be in the range of 6.52 to 6.85 in terms of FM.

  • PDF

A Study on the Stress Concentration of Crushed-stone Compaction Piles through Field Loading Test (현장재하시험을 통한 쇄석다짐말뚝의 응력분담에 관한 연구)

  • 이민희;최용규;임종철;황근배
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.107-114
    • /
    • 2003
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, the necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. At loading pressure, settlement showed decreasing tendency as replacement rate increases. At replacement rate of 20%, yield pressure was smaller but, at replacement rates of 30% and 40%, settlement and yield pressure were similar. The stress concentration ratio was within the range of 1.7 to 3.0 and it was higher as replacement rate increased.

A Study of Field Test on Bearing Capacity Increase Effect of Single Stone Column (단일쇄석말뚝의 지지력 증가효과에 관한 현장실험 연구)

  • Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.5-11
    • /
    • 2007
  • Among soft ground improvement methods by using granular material, the sand compaction pile method has been widely utilized in Korea, but, as a result of shortage and increase of unit price of sand, a necessity of an alternative method has been required. In this study, a series of in-situ static load tests for crushed-stone compaction piles were performed. Pile diameter was fixed to 700mm and areas of loading plates were changed. The static load tests were performed for area replacement ratios of 20, 30 and 40% respectively. Based on the test results, bearing capacity of single crushed-stone compaction pile was estimated. It showed that the settlement decreases as the replacement ratio increases. Also, a yielding capacity equation of the crushed-stone compaction pile considering replacement ratio was suggested.

An Analysis on the Effect Factors of the Abrasion Resistance of Interlocking Concrete Block for Roadways (블록의 표층재료 특성이 마모저항성에 미치는 영향 분석)

  • Lee, Min-Kyoung;Cho, Yoon-Ho;Lee, Jae-Hoon;Park, Jun-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.67-74
    • /
    • 2012
  • PURPOSES: In this study the influence factors related to abrasion resistance of interlocking concrete block have been evaluated, and comparisons between various domestic and foreign abrasion test methods was also accomplished. METHODS: The modified rotational cutting method suggested in ASTM C 944 was applied. Surface materials with different types of fine aggregate such as crushed sand, sea sand, and mixture of crushed and sea sand were tested to compare the aggregate effect for abrasion resistance. RESULTS: The different surface mixtures with various W/C ratios, mortar and fly ash ratios have been investigated for functional and economical considerations. CONCLUSIONS: This study had obtained reliable results by changing diamond blade of rotating cutter. Therefore, in order to improve the abrasion resistance of interlocking concrete block for road, a new mix design was proposed.

A Study on the Influnence of the Properties of Concrete on Powder Content and Shape of Crushed Sand (부순모래의 미립분 함유량 및 입형이 콘크리트의 특성에 미치는 영향에 관한 연구)

  • 이진규;윤기원;임종민;이종태;김성식;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.17-23
    • /
    • 1996
  • The objective of this study is to present the reference data about the influence of concrete properties using crushed sand, according to the change of powder content and grain shape. From the test results. We obtained that as powder content is increased, sand aggregate ratio, water content and S.P/C are increased in mixing design of concrete. The more powder content is the less slump and air content loss are decreased in fresh state, but the higher compressive strength and drying shrinkage are increased in hardened concrete state. As grain shape become round, water content is decreased in mixing design of concrete. And also, loss of slump and air content in fresh state, compressive strength in hardened state are increased.

  • PDF

A Study on Properties of Concrete Made of Natural and Crushed Sand in High Temperatures (자연모래와 부순모래를 사용한 콘크리트의 고온 하에서 특성연구)

  • Kim, Joo-Seok;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • The main object of this paper is to investigate the effects of high temperatures on the physical and mechanical properties of natural sand concrete(NSC) and crushed sand concrete(CSC). Test samples were exposed to high temperature ranging from $200^{\circ}C$ to $800^{\circ}C$. After exposure, various tests were conducted. Color image analysis and weight losses were determined and compressive strength test and splitting tensile strength test were conducted. The results indicated that weight losses increased as exposure temperature increased with comparable decreasing rate. The results also showed that compressive strength and splitting tensile strength and modulus of elasticity decreased as exposure temperature increased. The results also showed that residual compressive strength of NSC decreased more drastically than that of CSC at $200^{\circ}C$ and $400^{\circ}C$. Residual splitting tensile strength of NSC decreased more than that of CSC at $200^{\circ}C$, while NSC and CSC showed comparable residual strength ratio at $800^{\circ}C$.

A Study on the Characteristics of Concrete Use Crushed Aggregates Produced in Busan Suburbs (부산근교에서 생산된 부순골재를 사용한 콘크리트의 특성에 관한 연구)

  • Bae Won Mahn;Beak Dong Il;Jang Hui suk;Kim Myung Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.193-196
    • /
    • 2004
  • The objective of in this study makes investigation into the characteristics of concrete as to properties and blended ratio of crushed aggregates through experimental researches. In this research observed crushed quality characteristic of crushed aggregates that is produced in representative stony mountains of Busan suburbs (Yang-san, Kim-hea, Jin-hea). And wished to investigate the quality change and characteristics of concrete with variation of blend ratio of crushed sand(50, 60, 70, 80, 90, $100\%$). Measured the air contents and slump to investigate properties of fresh concrete, and unit weight and compressive strength in age of 7, 28, 60, 90 days to investigate properties of hardened concrete.

  • PDF

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

Quality Properties of Concrete Using Crushed Sand (부순잔골재를 사용한 콘크리트의 품질 특성에 관한 연구)

  • Yoo Seung Yeup;Shon Yu Shin;Lee Seung Hoon;Lee Gun Cheol;Yun Gi Won;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.455-458
    • /
    • 2005
  • This study compares the concrete using natural sand with the concrete using crush sand for the examination for the properties of a concrete. In the fresh concrete, the concrete using crush sand has less of the quantity of consistency, the content of air, and bleeding than the concrete using natural sand, and the concrete using crush sand has faster setting time than the concrete using natural sand. In hardening concrete, the concrete using crush sand has higher compressive strength and tensile strength than the concrete using natural sand because minute particles fill up a gap. Drying shrinkage of the concrete using natural sand is less than the concrete using crush sand.

  • PDF