• Title/Summary/Keyword: Crushed Aggregates

Search Result 178, Processing Time 0.027 seconds

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

Effective Use of Micro Fines (미분의 효과적인 이용에 관한 연구)

  • 백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixtures such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixtures such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the final mix. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the natural sands are drained, it is necessary and economical to utilize crushed sands(manufactured fine aggregate). It is reported that crushed sands differ from natural sands in gradation, particle shape and texture, and the micro fines in the crushed sands affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with high content of micro fines. This study provides firm data for the use of crushed sands with higher micro fines.

  • PDF

Concrete Pavement for the Access Road using Recycled Concrete Aggregate Crushed in-situ (현장파쇄 재생골재를 사용한 부체도로 콘크리트 포장)

  • Shim Jae Won;Kim Jin Cheol;Jo Kyu Seong;Choi Kang Sick
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.348-351
    • /
    • 2004
  • In this study, the recycled concrete aggregates crushed in-situ were used for the access road pcc (portland cement concrete) pavement. Based on laboratory results, the properties of materials, mixture proportioning, blend rates, and application conditions were investigated prior to trial application, and the various problems on recycled concrete aggregate under construction have been comprehensively checked.

  • PDF

Experimental investigation on the use of recycled aggregates in producing concrete

  • Shah, Attaullah;Jan, Irfan U.;Khan, Raza U.;Qazi, Ehsan U.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.545-557
    • /
    • 2013
  • Disposal of construction wastes poses major challenge to the municipal administration in the developing countries. At the same time new developments in these countries are unscrupulously exploiting the natural resources. The sustainable development requires judicious and careful utilization of natural resources. In this context, reuse of construction and demolition waste can save the global natural resources to greater extent. In this work the bricks and concrete waste from construction sites were crushed to the desired sizes and mixed in various proportions to study its properties in the concrete both in fresh and hardened states. Six mixes of natural and recycled aggregates were used to make the coarse aggregates for the concrete. From each mix nine cylinders were cast, which were tested at 7,14 and 28 days. The properties of concrete with recycled aggregates were compared with the control mix having natural aggregates. The nominal ratio of cement sand and coarse aggregates were kept at 1:2:4 by weight for all mixes. The tests have shown that concrete with recycled aggregates made from old concrete and brick bats provide greater opportunities for reuse of construction wastes in concrete.

Evaluation of the geogrid-various sustainable geomaterials interaction by direct shear tests

  • Bahadir Ok;Huseyin Colakoglu;Umud Dagli
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.173-186
    • /
    • 2023
  • In order to prevent environmental pollution, initiatives to increase the sustainability of resources are supported by society. However, the performance of recycled materials does not generally match that of natural materials. This study looks into the use of geogrid to improve various types of recycled aggregates. For this purpose, five different recycled aggregates were created by recycling wastes from the construction industry. Besides, direct shear tests (DS tests) were carried out on these recycled aggregates to determine their shear strengths. Following that, a triaxial geogrid was placed in the recycled aggregates to provide reinforcement, and the DS tests were conducted on the reinforced recycled aggregates. The results of the tests were also compared to those of tests performed on natural aggregates (NA). In conclusion, it was found that the recycled aggregates have lower shear strengths than the NA. Nonetheless, when reinforced with geogrid, the shear strength of the recycled concrete aggregates (RCA) and construction and demolition wastes (CDW) exceeded that of the NA. Furthermore, the geogrid reinforcement increased the shear strength of the recycled crushed bricks (CB), though not to the level of the NA.

Properties of Inter-Locking Block with the Contents of the Fine Particles (미립분의 혼입율 변화에 따른 인터로킹 블록의 특성)

  • 이상태;김기철;신병철;이동남;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.171-174
    • /
    • 1999
  • The objective of this study is to investigate the properties of fine particles in the process of producing crushed fine aggregates under various fine particle contents. According to the test results, when fine particles are added as substitution of aggregates by about 10%, it shows that the qualities of interlocking block such as compressive strength, flexural strength and absorption ratio are improved. The application of fine particles provide various advantages in the sides of recycling of materials

  • PDF

Analysis of 2019 Domestic Aggregate Production in Korea (I) (2019년도 국내 골재 수급 분석 (I))

  • Hong, Sei Sun;Lee, Jin Young
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.755-769
    • /
    • 2020
  • In 2019, about 134 million ㎥ of aggregate was produced in an estimated 880 quarries and pits in 17 metropolitan governments. Leading producing metropolitan cities were Gyeonggi-do, Gyeongsangnam-do, Chungcheongbuk-do, Gangwon-do, Gyeongsangbuk- do, Chungcheongnam-do, in order decreasing volume, which together accounted for about 71% of total product. Of the total domestic aggregates produced in 2019, about 31 % was sand and about 69% was gravel. It estimated that of the 134 million ㎥ of aggregates in Korea in 2019, about 50.3% was produced by screening crushed aggregate by 41.4% by forest aggregate, 3.3% by land aggregate, 1.7% by sea aggregate and 1.7% by washing each other, and 0.7% by river aggregate. This indicates that screening crushed aggregate and forest aggregate are the main producers of domestic aggregates. The most crushed and forest aggregate was extracted at the Gyeonggi-do and Gyeongsangnam-do, respectively. Land aggregate was mainly extracted at Gyeongsangbuk-do and Gangwon-do. Therefore, in the future supply and demand of aggregate resources, it is judged that there should be a primary policy direction for screening crushed and forest aggregate.

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate (잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능)

  • Kim, Hyeong-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Properties of normal-strength mortar containing coarsely-crushed coal bottom ash considering standard particle size distribution of fine aggregate were investigated. Mortar containing raw bottom ash was applied as a reference. By crushing the bottom ash with a particle size larger than fine binder but smaller than fine aggregates, i.e., coarse-crushing, water absorption and specific gravity of the particles could be controlled as similar levels to those of natural fine aggregates. Workability and strength of the mortar were not changed and even increased when the coarsely-crushed bottom ash was added considering standard particle size distribution in Standard Specification for Concrete, while those were decreased when raw bottom ash was added without any treatment. When a replacement ratio of coarsely-crushed bottom ash was less than 30 vol.%, there were no significant decrease in dynamic modulus of elasticity and dry shrinkage of the mortar.