• Title/Summary/Keyword: Crushed Aggregates

Search Result 178, Processing Time 0.022 seconds

A Study on the Characteristics of Concrete Use Crushed Aggregates Produced in Busan Suburbs (부산근교에서 생산된 부순골재를 사용한 콘크리트의 특성에 관한 연구)

  • Bae Won Mahn;Beak Dong Il;Jang Hui suk;Kim Myung Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.193-196
    • /
    • 2004
  • The objective of in this study makes investigation into the characteristics of concrete as to properties and blended ratio of crushed aggregates through experimental researches. In this research observed crushed quality characteristic of crushed aggregates that is produced in representative stony mountains of Busan suburbs (Yang-san, Kim-hea, Jin-hea). And wished to investigate the quality change and characteristics of concrete with variation of blend ratio of crushed sand(50, 60, 70, 80, 90, $100\%$). Measured the air contents and slump to investigate properties of fresh concrete, and unit weight and compressive strength in age of 7, 28, 60, 90 days to investigate properties of hardened concrete.

  • PDF

Physuical characteristics of crushed aggregates in Korea (한반도 산림골재의 물성특성)

  • 양동윤
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • In the last decade, the supply of natural aggregates has been continuously increased due to the other types of aggregates. In general, aggregates constitute 70-80% of the total volume of concrete, so the quality of aggregates is main factor controlling physical characteristics of concrete. For this reason, physical properties of aggregate according to different rock types were studied. The majority of crushed aggregates is taken out of granite, gneiss, sandstone, andesite, basalt and so forth. The physical properties of these rock types were tested and most of them fell within the acceptable limit on the base of Korean standard regulation. The major lithology of the crushed aggregates is granite and gneiss, both of which are marked for more than 50% of total lithology thpes in Korea. A to the physical properties of granite, the high specific gravity coincides with low porosity, low absorption ratio, while the abrasion and soundness index show, in general, no specific trend. It has been assumed that slight differences of the physical properties of granite aggregates are related with those of the mineral composition, grain size, and so on. In comparison to granite, the physical properties of gneiss have little correlation one after another. This trend is related to different mineral composition, grain size and typical sheet fractures typically prevailing in the texture of gneiss. Spatial pattern of physical properties shows that high specific gravity of granite coincides only with low porosity and absorption ratio in all provinces except Cheolla province, and high specific gravity of gneiss coincides with low porosity and absorption ratio only in Cheolla and Gandwon provinces.

  • PDF

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Litholohical and Mechanical Characteristics of Crushed Limestone Aggregates (쇄석 골재용 석회암의 암석학적 및 역학적 특성)

  • 진호일;민경원;백환조;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.119-126
    • /
    • 1997
  • Recently, duc to highly increased consumption of' ngg~.egatc>s f o ~ . construction. studies have focused on the effective utilization of rock wastes abandoned so far. This study was designed, firstly, to determine t,hc petrological, g'ochemical and mechanical cha~,acte~istics of' crushed limestone aggregates in thc Samhwa district for suitable construction aggregates and, secondly, to offer basic data for cff'ective utilization of low grade limestones. Results of' the petrographic st,udy indicates that the crushed limestone aggregates in the Samhwa district can bo separate4 into two groups, namely f'inc-grained and cowlxcgrained limestones. Dominantly distributed fine-grained limestone containing some dolomite has higher Mgo and $SiO_2$ contents compared to the coarse-graincd limestonr. It, can be classified as medium strength rock by the physical and mcxhanical pi.opertics. I3ased on the size of' mineral grains and chemical compositions, it is suggested that the crushed limestone aggregates in t,his study area would bctkr be u s ~ i for asphalt concr.ctt., road pavement, or railroad ballast materials than for cement concrete.

Influence of Fine Aggregate on the Bleeding of Concrete (잔골재가 콘크리트의 블리딩에 미치는 영향)

  • 황인성;배정렬;심보길;전충근;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.317-322
    • /
    • 2001
  • This paper investigates the influence of fine aggregates on bleeding of concrete. According to test results, as water content decreases, crushed sand content increases, fluidity shows decline tendency. As for aggregates kinds, concrete using sea sand shows most fluidity loss among the tested results. Compressive strength gains highly when crushed sand is used. As for bleeding of concrete, bleeding shows decline tendency because of increasing in powder content and filling effect of voids. Bleeding amount is in a decreasing order of magnitude for concretes made with the following aggregates: sea sand, river sand, and crushed sand. Accordingly, crushed sand mixed with river sand and sea sand with certain proportion enable to reduce bleeding and enhance strength.

  • PDF

The Effect of Soil on the Fundamental Properties of Mortar in Fine Aggregate (잔골재 중 토분이 모르타르의 기초적 특성에 미치는 영향)

  • Sin, Se-Jun;Lee, Jea-Hyeon;Park, Kyung-Teak;Park, Min-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.83-84
    • /
    • 2019
  • Recently, the supply and demand of aggregates has become difficult due to various practical constraints such as depletion of natural aggregate resources and tightening environmental regulations. As a result, aggregates such as selective crushed aggregates and river aggregates are now distributed to the construction market. In particular, among the aggregates distributed in the country, selective crushed aggregates that have been used recently are characterized by the fact that the quality of the raw material is not uniform and is based on geological characteristics. Such bad aggregates can affect the overall performance of the concrete and shorten the life of the structure. Therefore, in this study, in order to improve such problems, we want to analyze the effect of aggregate powder on mortar.

  • PDF

Physical Properties of Planting Concrete Using Recycled Aggregate (재생골재를 이용한 식재용 콘크리트의 물리적 특성)

  • 이상태;신동안;황정하;김진선;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, physical properties of planting concrete using Recycled aggregates made with demolished concrete and construction wastes are investigated. According to the test results. It shows that recycled aggregates made with demolished concrete and construction wastes have low physical properties compared with crushed stone. But, recycled aggregates made with construction wastes shows better performance in absorption ratio, unit weight and thermal conductivity than crushed stone. According it is thought that they are available for being applied to planting concrete considering the sides of efficient recycling of construction wastes and saving the manufacturing cost.

  • PDF

Lean Concrete Using the Site-crushed Recycled Aggregates (현장파쇄 재생골재 활용 빈배합 콘크리트)

  • 심재원;김진철;강혜진;조규성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.243-248
    • /
    • 2003
  • To select the proper material for lean concrete, the recycled aggregates produced by 3 crushers, such as jaw, impact and mill-treated, were investigated for the gradation and the compaction, and strength of concrete made of them. The experiments for all the recycled aggregates used, showed that the cylinders made of them had 7-day compressive strengths over 50kgf/$cm_2$, the provision of qualification, and the OMCs are in the range 5.7% to 6.8%. Also, the unit cement contents for the impact-crushed are 158kg/$cm_2$.

  • PDF

Crushing Characteristics of Single Particle of Recycled Aggregate from Waste Concrete (폐콘크리트 순환골재의 단입자 파쇄 특성)

  • Park, Sung-Sik;Kim, Sang-Jung;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.23-32
    • /
    • 2016
  • A single particle crushing test was carried out for recycled aggregates from waste concrete while demolishing various structures. When the recycled aggregates were used for backfill or road subbase materials, load-displacement and crushing characteristics were analyzed. The recycled aggregates with hydrates and aggregates were sorted into 40 mm size (75-40 mm) and 20 mm size (40-20 mm). At initial loading, their irregular surface was closed to and then crushed by loading plate. Such first crushing stage was called 'Surface crushing'. Further loading, some hydrate was crushed and detached from aggregate, and such process repeated several times. This state is called 'hydrate crushing'. The final state is called 'aggregate crushing' in which aggregate crushed and following load suddenly dropped down. As the load increased, such crushing cycle is repeated several times. The shapes of aggregates are round or square, and triangle or long shaped. Depending on their shapes and surface conditions, they crushed in different ways. The 63% of aggregates showed more than 50% load reduction due to aggregate crushing. The 90% load reduction occurred at 15% of aggregates. The 40 mm aggregate crushed at maximum load between 3.05-4.38 kN and 70% of crushed aggregates were less than 20 mm.

Influence of the Type of Fine Aggregate on Concrete Properties (잔골재 종류가 콘크리트의 물성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.459-467
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. Following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates are utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the quality of concrete through the analysis of the effects of such fine aggregates on the physical properties of fresh concrete and strength of hardened concrete. Results revealed that crushed sand degraded the fluidity and air entraining of concrete compared to natural aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the physical properties of concrete. The type of fine aggregates appeared to have negligible influence on the strength for W/C of 55%, 45% while crushed sand decreased the strength for W/C of 35% compared to natural aggregates. It analyzed that the combination of crushed sand exhibiting bad grain shape and grade with natural aggregates improved the characteristics of fresh concrete and had negligible influence on the strength.