• 제목/요약/키워드: Crude oil purification

검색결과 18건 처리시간 0.032초

원유 불순물 제거 및 정제 관련 촉매 기술에 대한 특허 분석 (A Patent Analysis on Impurity Removal and Catalysts for Crude Oil Purification)

  • 조희진;문성근;조용민;정연수
    • 청정기술
    • /
    • 제16권1호
    • /
    • pp.1-11
    • /
    • 2010
  • 우리가 사용하는 원유는 점점 중질화 되고 산도가 높아지고 있다. 석유의 품질에 영향을 미치는 유황의 함량을 조절하고, 오염금속을 제거하기 위하여 탈황, 탈질, 탈금속 등 불순물 제거기술의 중요성이 커지고 있으며 제품의 생산량과 수율을 조절하기 위한 정제 관련 촉매기술의 중요성 역시 증대하고 있다. 본 논문에서는 원유에서 황, 질소, 금속성분 등을 제거하는 기술과 원유의 정제와 관련된 촉매 기술에 대하여 한국, 미국, 일본, 유럽 등을 중심으로 1970년대 중반부터 2009년까지의 특허를 조사하고, 각국의 출원현황, 점유율, 주요출원인, 특허활동지수 등을 분석하였다. 또한, 주요 기술 분야에 대한 기술흐름도를 작성하여 기술 동향을 살펴보았다.

In situ isolation and characterization of the biosurfactants of B. Subtilis

  • Akthar, Wasim S.;Aadham, Mohamed Sheik;Nisha, Arif S.
    • Advances in environmental research
    • /
    • 제9권3호
    • /
    • pp.215-232
    • /
    • 2020
  • Crude oils are essential source of energy. It is majorly found in geographical locations beneath the earth's surface and crude oil is the main factor for the economic developments in the world. Natural crude oil contains unrefined petroleum composed of hydrocarbons of various molecular weights and it contains other organic materials like aromatic compounds, sulphur compounds, and many other organic compounds. These hydrocarbons are rapidly getting degraded by biosurfactant producing microorganisms. The present study deals with the isolation, purification, and characterization of biosurfactant producing microorganism from oil-contaminated soil. The ability of the microorganism producing biosurfactant was investigated by well diffusion method, drop collapse test, emulsification test, oil displacement activity, and blue agar plate method. The isolate obtained from the oil contaminated soil was identified as Bacillus subtilis. The identification was done by microscopic examinations and further characterization was done by Biochemical tests and 16SrRNA gene sequencing. Purification of the biosurfactant was performed by simple liquid-liquid extraction, and characterization of extracted biosurfactants was done using Fourier transform infrared spectroscopy (FTIR). The degradation of crude oil upon treatment with the partially purified biosurfactant was analyzed by FTIR spectroscopy and Gas-chromatography mass spectroscopy (GC-MS).

Purification and Characterization of the Lipase from Acinetobacter sp. B2

  • Sohn, Sung-Hwa;Park, Kyeong-Ryang
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.189-195
    • /
    • 2005
  • Industrial development has increase consumption of crude oil and environmental pollution. A large number of microbial lipolytic enzymes have been identified and characterized to date. To development for a new lipase with catalytic activity in degradation of crude oil as a microbial enzyme, Acinetobactor sp. B2 was isolated from soil samples that were contaminated with oil in Daejon area. Acinetobactor sp. B2 showed high resistance up to 10 mg/mL unit to heavy metals such as Ba, Li, Al, Cr, Pb and Mn. Optimal growth condition of Acinetobactor sp. B2 was confirmed $30^{\circ}C$. Lipase was purified from the supernatant by Acinetobactor sp. B2. Its molecular mass was determined to the 60 kDa and the optimal activity was shown at $40^{\circ}C$ and pH 10. The activation energies for the hydrolysis of p-nitrophenyl palmitate were determined to be 2.7 kcal/mol in the temperature range 4 to $37^{\circ}C$. The enzyme was unstable at temperatures higher than $60^{\circ}C$. The Michaelis constant $(K_{m})\;and\;V_{max}$ for p-nitrophenyl palmitate were $21.8{\mu}M\;and\;270.3{\mu}M\;min^{-1}mg\;of\;protein^{-1}$, respectively. The enzyme was strongly inhibited by $Cd{2+},\;Co^{2+},\;Fe^{2+},\;Hg^{2+},\;EDTA$, 2-Mercaptoethalol. From these results, we suggested that lipase purified from Acinetobactor sp. B2 should be able to be used as a new enzyme for degradation of crude oil, one of the environmental contaminants.

해양으로부터 분리한 Pseudomonas sp. CHCS-2가 생산하는 Biosurfactant의 정제 및 특성에 관한 연구 (Purification and Characterizationn of Biosurfactant from Marine Pseudomonas sp. CHCS-2)

  • 류병호;김학주
    • KSBB Journal
    • /
    • 제10권5호
    • /
    • pp.582-588
    • /
    • 1995
  • 해양의 유류유출이 잦은 지역으로부터 crude oil 분해능이 뛰어난 미생물을 분리하여 통정한 결과 Pseudomoans 속으로 판명되였으며, 이를 Pseud$\sigma$ moans sp. CHCS-2로 명 명하였다. 이 균주가 배양 중에 생산하는 biosurf actant의 생생 최적 pH 및 NaCI 농도는 각각 8.0 및 3.0% 였으며, 질소원인 peptone에 영향을 받았다. 2% Kuwait crude oil이 첨가된 배양액을 48, 96, 132시간별로 gas chroma­t tography를 이용, 잔류 oil을 분석한 결과 Kuwait crude oil의 C10-CI4부위에 biosurf actant가 작용하여 분해하였으며, 배양 상층액으로부터 Amberlite XAD-7을 이용한 흡착 chromatography와 Sepha­d dex G-100을 이용한 gel chromatography, 그리고 HPLC를 이용하여 biosurf actant를 분리. 정제한 결과 유화력이 뛰어난 단일 peak를 얻었다. Bio-sur­f f actant 유화력은 $40^{\circ}C$에서 가장 좋았으며, 안정성 은 $30^{\circ}C$에서 $60^{\circ}C$까지의 넓은 온도 범위에서 유지 되었다. 또한, 정제된 biosurf actant를 이용하여 계 연장력에 미치는 영향을 검토한 결과, 상엽적으로 널리 판매되고 있는 Tween 80, Tween 60 그리고 SDS보다 표연장력 저하능력이 뛰어난 것으로 밝혀졌다.

  • PDF

원유로 오염된 갯벌 지역의 자연정화 기능 향상 기술의 개발 (Enhanced Natural Purification of Crude Oil Contaminated Tidal Flat)

  • 김영아;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.24-30
    • /
    • 2011
  • Tidal flats which are ecologically sensitive, are hard to remediate once they are contaminated by oil spill accidents. Traditional oil remediation measures focus on removal efficiency, and their improper implementation can adversely affect crude oil contaminated coastal areas and greatly disrupt the structure and functions of crude oil contaminated tidal flats. In this study, the oil degradation due to the implementation of remediation measures naturally enhanced using air and natural oil sorbents was evaluated in the lower strata of tidal flats. The effects of air and natural oil sorbents on oil degradation for two concentration levels (< 500 ppm and > 500 ppm) were tested at artificially contaminated tidal flats. Fifty days after these treatments, the natural oil sorbent treatment showed the lowest total petroleum hydrocarbon (TPH) concentration ($4.46{\pm}1.47%$) at the low concentration level, whereas both air and natural oil sorbent treatments showed high degradation efficiencies at the high concentration level ($29.30{\pm}4.39%$). Although the phosphatase activity decreased for all treatments, there was no significant difference between the decreases for the different treatments; on the other hand, B-glucosidase activities were high for both air and natural oil sorbent treatments. Although degradation efficiencies decreased as the concentration increased, the air provision and natural oil sorbent treatment could be an effective ecological restoration measure for oil contaminated tidal flats while minimizing the environmental impact of the remediation efforts.

Rhodotorula muciloginosa G-1에서 생산되는 biosurfactant의 정제 및 물리적 성질 (Purification and Physical Proerties of Biosurfactant Produced from Rhodotorula muciloginosa)

  • 이철수;이병옥;강상모
    • 한국미생물·생명공학회지
    • /
    • 제23권2호
    • /
    • pp.229-235
    • /
    • 1995
  • The surface tension-decreasing biosurfactant was purified from Rhodotorula muciloginosa G-1. The purification procedure was the solvent extraction of culture broth. To ensure complete extraction, the sample was extracted twice with equal volume of ethylacetate. The crude solution was washed with n-hexane to remove unconsumed soybean oil. The crude sample of biosurfactant was applied to Silica gel column chromatography equilibrated with chloroform, and eluted with chloroform : methanol gradient. Serveral solvent system was used to developed the thin layer chromatography (TLC). The purified biosurfactant sample gave one spot (Rf 0.78). It was estimated that biosurfactant was glycolipid about having M.W.1,500 with standard of polyethyleneglycol by Sephadex LH-20 column chromatography.

  • PDF

유독해수(油獨海水)의 조정(調整)과 성장(性狀)에 관한 연구(硏究) (Conditioning and Characteristics of the Sea Water containing Heavy Oil)

  • 조봉연;황용우;김종국
    • 상하수도학회지
    • /
    • 제12권2호
    • /
    • pp.31-41
    • /
    • 1998
  • As the leakage of crude oil from tankers breaks out frequently, it caused a serious problem for ocean pollution and calls for developing treatments to handle the leaked crude oil and mitigate the pollution. Thus it is required to develop new purification technolgies and appropriate treatment systems which have sufficient treatment capability in order to cope with the anticipated ocean pollution. In this experiment, A and B type heavy oils were used to make the emulsion of both water containing heavy oil and sea-water containing heavy oil. The following are the main results from this study ; 1. When A and B type heavy oils were added to the original sea-water and treatedin the homogrenizer respectively, the particle of oil beacame smaller in both cases. Under the same condition, while the initial oil density of sea-water containing B-heavy oil is higher than of emulsion with A-heavy oil, the particle of A-heavy oil is finer than that of B-heavy oil. 2. When A and B type heavy oils were added to distilled water and treated in the homogenizer respectively, the particle was more dispersed and finer than that in the case of sea-water in both cases. In this result, the water containing oil formed more stable emulsion than the sea-water containing oil. 3. In this experiment, all emulsions showed oil in water types. 4. Since the oil particle is larger in the sea-water than in the distillated water, interms of elimination of oil, it is thought to be more important to give Membrane treatment after implementing sandfilter, activity carbon, coagulation-sedimentation and floating separation as pre-treatment.

  • PDF

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu;Tang, Cheng;Yang, Huan;Yu, Huimin;Chen, Yu;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.390-396
    • /
    • 2013
  • Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

Role of Unstable Phenanthrene-Degrading Pseudomonas species in Natural Attenuation of Phenanthrene-Contaminated Site

  • Prakash, Om;Lal, Rup
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.79-87
    • /
    • 2013
  • An unstable yet efficient phenanthrene-degrading bacterium strain Ph-3 was isolated from a petroleum-contaminated site at the Mathura Oil Refinery, India. The strain was identified as Pseudomonas sp. using a polyphasic approach. An analysis of the intermediates and assays of the degradative enzymes from a crude extract of phenanthrene-grown cells showed a novel and previously unreported pattern of 1, 2-dihydroxy naphthalene and salicylic acid production. While strain Ph-3 lost its phenanthrene- degrading potential during successive transfers on a rich medium, it maintained this trait in oligotrophic soil conditions under the stress of the pollutant and degraded phenanthrene efficiently in soil microcosms. Although the maintenance and in vitro study of unstable phenotypes are difficult and such strains are often missed during isolation, purification, and screening, these bacteria constitute a substantial fraction of the microbial community at contaminated sites and play an important role in pollutant degradation during biostimulation or monitored natural attenuation.