• Title/Summary/Keyword: Crude enzyme production

Search Result 212, Processing Time 0.021 seconds

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336

  • Jeon, Bo-Young;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.666-674
    • /
    • 2009
  • An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.

A Study on Growth Condition and Proteolytic Enzyme of Halobacterium halobium (Halobacterium halobium 의 생육조건 및 Protease 에 관한 연구)

  • 민윤식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.856-862
    • /
    • 1994
  • In salt-preserved foods of every kinds, it was examined the growth condition of halophilic bacteria that induced a change of colour, taste, nutritive substance, a production condition of enzyme and a character of crude enzyme. Used bacteria is H. halobium a kind of extremely halophilic bacteria, and the required of optimum culture needed a quite long time of crude enzyme production is 168 hours. Optimum pH is about 7-7.5, so the traditional food of such neutrality pH as soybean paste and soy sauce particularly come into trouble because the growth can flourish in neutrality or alkaliescence, and the crude enzyme also appeared that best activation between pH 6 and pH 8. The optimum temperature is about 37$^{\circ}C$, the optimum temperature of enzyme is about 40 $^{\circ}C$ and the temperature stability is settled for 15 minutes and it is completely inactivated at 10 minutes. In the influence of each metal ion, Fe++ and Mn++ a stimulated the growth of H.halobium and the activation of enzyme, Cu++ and Zn++ were identified that made the growth and the activation of enzyme inhibit.

  • PDF

Isolation of Microorganism Producing Chitinase for Chitooligosaccharides Production, Purification of Chitinase, and its Enzymatic Characteristics (Chitoologosaccharides 생산에 적합한 Chitinase를 분비하는 균주의 선별, Chitinase의 분리정제 및 반응특성)

  • 정의준;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.187-196
    • /
    • 1995
  • In order to produce fuctional chitooligosaccharides, a strain excreting mainly endo-type chitinase suitable for chitooligosaccharides production was newly screened and identified as Aspergillus fumigatus JC-19. The chitinase excretion was repressed in nutrient rich medium but stimulated by colloidal chitin indicating that the chitinase is inducible type enzyme. Maximum secretion of the enzyme was observed at pH 7.0 and 37$\circ$C . The growth and chitinase production patterns of Aspergillus fumigatus JC-19 showed that the cell growth reached maximum after 4-5 days with final chitinase concentration of 0.46 unit per ml. Excreted chitinase was purified by ammonium sulfate precipitation, colloidal chitin adsorption, anion exchange chromatography, and gel filtration, respectively, and measured M.W of 50 KDa. The enzyme reaction carried out both by crude and purified chitinase showed that the purified chitinase accumulated more chitooligosaccharides of 1-6 degree of polymerization than that of crude chitinase.

  • PDF

Production ani Some Properties of Milk Clotting Enzyme from Mucor sp. (Mucor sp. 에 의한 응유효소생산(凝乳酵素生産)과 그의 성질(性質)에 관하여)

  • Yeum, Dong Kil;Kim, Chan Jo;Lee, Jong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.144-155
    • /
    • 1987
  • A potent fungus producing milk clotting enzyme with fairly weak proteolytic activity was isolated from various soil and sewage, which the selected strain, SA-101, was identified as Mucor sp. with microbiological characteristics. Its milk clotting enzyme production was maximized when grown on 10g of wheat bran media added to 8ml of tap water containing 0.1M HCl for 60hrs at $30^{\circ}C$. This enzyme production was stimulated by addition of 6% lactose, 0.05% NaCl and reached a maximal level of 9810 unit/g wheat bran. The crude enzyme product could be produced effectively by salting out with ammonium sulfate fractionation and lyophilization. The ratio of milk clotting activity to proteolytic activity of crude enzyme product was lower than Hansen rennet, but resembled to Meito rennet. The optimal temperature of milk clotting activity of crude enzyme product was abound $60^{\circ}C$ on a substrate of 10% reconstituted skim milk containing 1/100M $CaCl_2$.

  • PDF

Energy Value of Cassava Products in Broiler Chicken Diets with or without Enzyme Supplementation

  • Bhuiyan, M.M.;Iji, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1317-1326
    • /
    • 2015
  • This study investigated the metabolizable energy (ME) intake, net energy of production (NEp), heat production (HP), efficiencies of ME use for energy, lipid and protein retention as well as the performance of broiler chickens fed diets based on cassava chips or pellets with or without supplementation with an enzyme product containing xylanase, amylase, protease and phytase. The two products, cassava chips and pellets, were analysed for nutrient composition prior to feed formulation. The cassava chips and pellets contained 2.2% and 2.1% crude protein; 1.2% and 1.5% crude fat; and 75.1% and 67.8% starch, respectively. Lysine and methionine were 0.077%, 0.075%, and 0.017%, 0.020% protein material, respectively, while calculated ME was 12.6 and 11.7 MJ/kg, respectively. Feed intake to day 21 was lower (p<0.01) on the diet containing cassava chips compared to diets with cassava pellets. Enzyme supplementation increased (p<0.01) feed intake on all diets. Live weight at day 21 was significantly (p<0.01) reduced on the diet based on cassava chips compared to pellets, but an improvement (p<0.01) was noticed with the enzyme supplementation. Metabolizable energy intake was reduced (p<0.01) by both cassava chips and pellets, but was increased (p<0.01) on all diets by enzyme supplementation. The NEp was higher (p<0.01) in the maize-based diets than the diets containing cassava. Enzyme supplementation improved (p<0.01) NEp in all the diets. Heat production was highest (p<0.01) on diets containing cassava pellets than on cassava chips. It is possible to use cassava pellets in diets for broiler chickens at a level close to 50% of the diet to reduce cost of production, and the nutritive value of such diets can be improved through supplementation of enzyme products containing carbohydrases, protease, and phytase.

Effects of NSP Degrading Enzyme on In vitro Digestion of Barley

  • Li, W.F.;Sun, J.Y.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.122-126
    • /
    • 2004
  • A digestion trial in vitro was conducted to study effects of supplementation of NSP (non-starch polysaccharides) degrading enzyme (feed grade) on cell wall degradation and digestibility of nutrients in barley. The slices of barley were soaked in distilled water with or without 0.15% non-starch polysaccharides degrading enzyme. Microscopic examination of the slices showed that the endosperm cell wall of barley was completely degraded by the non-starch polysaccharides degrading enzyme. The residues and supernatant of digesta in vitro were separated by filtration with 0.1 mm nylon fabric. The residues were used for measurement of crude protein, crude fat, crude fiber, and moisture. The supernatant was used for determination of viscosity, as well as amino-nitrogen and glucose content. The results showed that compared with the control, the amino-nitrogen and glucose content of the supernatant increased by 17.58% (p<0.05) and 10.26% (p<0.05), respectively, while viscosity did not change. Enzyme supplementation increased the digestibilities of dry matter, crude protein, nitrogen-free extract, crude fat and crude fiber of barley by 18.1% (p<0.05), 20.3% (p<0.05), 16.4% (p<0.05), 26.9% (p<0.05) and 30.0% (p<0.05), respectively. The present study suggests that cell wall hydrolysis may contribute to improved nutrient digestion in vivo when non-starch polysaccharides degrading enzymes are fed to swine.

Production of Deglucose-ApioseXylosylated Platycosides from Glycosylated Platycosides by Crude Enzyme from Aspergillus tubingensis

  • Shin, Kyung-Chul;Kil, Tae-Geun;Kang, Su-Hwan;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.430-436
    • /
    • 2022
  • Platycosides, Platycodi radix (Platycodon grandiflorus root) saponins, are used as food supplements and exert diverse pharmacological activities. Deglycosylation of saponins enhances their biological efficacy, and deglycosylated platycosides are produced mainly through enzymatic hydrolysis. However, the types of available deglycosylated platycosides remain limited because of a lack of hydrolyzing enzymes that can act on specific glycosides in glycosylated platycosides. In this study, a crude enzyme from Aspergillus tubingensis converted platycoside E (PE) and polygalacin D3 (PGD3) into deglucose-apiose-xylosylated (deGAX)-platycodin D (PD) and deGAX-polygalacin D (PGD), respectively. The products were identified through LC/MS analysis by specifically hydrolyzing all glucose residues at C-3, and apiose and xylose residues at C-28 of platycoside. The hydrolytic activity of the crude enzyme obtained after the cultivation of the fungus using citrus pectin and corn steep solid as carbon and nitrogen sources, respectively, in culture medium was increased compared with those using other carbon and nitrogen sources. The crude enzyme from A. tubingensis was the most effective in producing deGAX platycoside at pH 5.0 and 60℃. The crude enzyme produced 0.32 mg/ml deGAX-PD and 0.34 mg/ml deGAX-PGD from 1 mg/ml PE and 1 mg/ml PGD3 (at pH 5.0 and 60℃) for 12 and 10 h, with productivities of 32.0 and 42.5 mg/l/h and molar yields of 62.1 and 59.6%, respectively. To the best of our knowledge, this is the first study to produce deGAX platycosides from glycosylated platycosides.

Studies on Cellulolytic Enzymes Produced by Chaetomium globosum -Part . 1 ; Properties of Crude Cellulolytic Enzymes- (Chaetomium globosum 이 생성(生成)하는 Cellulose 분해효소(分解酵素)에 관(關)한 연구(硏究) -제1보(第1報) 조효소(粗酵素)의 성질(性質)-)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.23-31
    • /
    • 1968
  • We have obtained the following results, at the production of cellulase of Chaetomium globosum and its properties of crude enzyme. 1. At the production of enzyme, wheat bran solid culture was more active than surface or shaking culture. 2. The production of enzyme was maximum between the eighth and the tenth days, but slightly decreased thereafter. 3. The optimum condition of the reactions in saccharification with CMC were obtained the following results. 1) The optimum pH was within the range of from 4.0 to 5.0 and stable pH range was within 3.5 to 6.5. 2) The optimum temperature was $40^{\circ}C$ and thermal stability was below $50^{\circ}C$ and completely inactivated at $70^{\circ}C$ 4 Dialyzed crude enzyme was activated by $Mn^{++}\;Mg^{++}\;Fe^{++}\;and\;Mo^{++}\;respectively\;but\;Hg^{++}$ was inhibited its enzyme action.

  • PDF

Studies on the Microbial Utilization of Agricultural Wastes (Part 11) Properties of Cellulolytic Enzyme Produced by a Cellulolytic Fungus Trichodrma sp. KI 7-2 and its Application to the Fermented Feed Production (농산폐자원의 미생물학적 이용에 관한 연구(제11보) Trichoderma sp KI 7-2가 생산하는 섬유소분해효소의 성질 및 발효사요에의 응용)

  • Bae, Moo;Lee, Gye-Jun;Tak, Sun-Mi;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • In order to develop the processes for the production of fermented feed from cellulosic agricultural by-product, cereal straw, by th action of cellulolytic fungus, the properties of the cellulolytic enzyme produced by Trichoderma sp. KI 7-2 was studied. A higher enzyme activity was obtained in the culture added by 1% rice or barley straw powder than in the culture of pure cellulose. The crude enzyme was prepared by precipitating from 20∼60% saturated ammonium sulphate of the culture supernatant. The optimum conditions for the enzyme reaction were temperature of of 50$^{\circ}C$ and pH 4.2. The crude enzyme was static at 50$^{\circ}C$ for two hours and at pH between 4 and 6. These properties were adopted for the fermented feed production, and several production. Thus, several processes of semisolid culture were devicced to up grade tile fermented feed and to develop into the acceptable quality.

  • PDF

Characterization and optimum production condition of extracellular protease from Pseudoalteromonas donghaensis HJ51 (Pseudoalteromonas donghaensis HJ51의 체외 단백질 분해효소 특성과 생산 조건)

  • Oh, Ji-Sung;Choi, Yoon-Soo;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.75-80
    • /
    • 2015
  • Pseudoalteromonas donghaensis HJ51, isolated from the East Sea, has been reported as a novel strain to produce extracellular protease. Crude supernatant was used to determine optimal activity and optimal production conditions for the enzyme. It was found that the optimal temperature and pH of the protease were $40^{\circ}C$ and pH 7.5-10.5, respectively. The enzyme activity was kept to 88% at the pH 11. In metal requirement analysis, the enzyme exhibited the highest activity when 10 mM $Fe^{3+}$ was supplied. While supplementation of additional carbon sources used in study showed no positive effect on cell growth and enzyme activity, the addition of beef extract, tryptone, or casamino acids instead of peptone of PY-ASW containing 1% glucose increased enzyme production to 21, 7, 4%, respectively. Taken together these properties, the enzyme produced from P. donghaensis HJ51 can be applied to the industries that require protease activity under alkaline pH and low temperature.