DOI QR코드

DOI QR Code

Characterization and optimum production condition of extracellular protease from Pseudoalteromonas donghaensis HJ51

Pseudoalteromonas donghaensis HJ51의 체외 단백질 분해효소 특성과 생산 조건

  • Oh, Ji-Sung (Department of Microbiology, Chungbuk National University) ;
  • Choi, Yoon-Soo (Department of Microbiology, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • 오지성 (충북대학교 자연과학대학 미생물학과) ;
  • 최윤수 (충북대학교 자연과학대학 미생물학과) ;
  • 노동현 (충북대학교 자연과학대학 미생물학과)
  • Received : 2015.03.10
  • Accepted : 2015.03.18
  • Published : 2015.03.31

Abstract

Pseudoalteromonas donghaensis HJ51, isolated from the East Sea, has been reported as a novel strain to produce extracellular protease. Crude supernatant was used to determine optimal activity and optimal production conditions for the enzyme. It was found that the optimal temperature and pH of the protease were $40^{\circ}C$ and pH 7.5-10.5, respectively. The enzyme activity was kept to 88% at the pH 11. In metal requirement analysis, the enzyme exhibited the highest activity when 10 mM $Fe^{3+}$ was supplied. While supplementation of additional carbon sources used in study showed no positive effect on cell growth and enzyme activity, the addition of beef extract, tryptone, or casamino acids instead of peptone of PY-ASW containing 1% glucose increased enzyme production to 21, 7, 4%, respectively. Taken together these properties, the enzyme produced from P. donghaensis HJ51 can be applied to the industries that require protease activity under alkaline pH and low temperature.

동해에서 분리된 Pseudoalteromonas donghaensis HJ51는 체외분비 단백질 분해효소를 생산하는 신종 미생물로 보고되었다. 체외 단백질 분해효소의 특성과 최적 생산 조건을 결정하기 위해 crude supernatant을 사용하여 단백질 분해효소의 최적 활성 온도와 pH를 조사한 결과 $40^{\circ}C$와 pH 7.5-10.5이었으며, pH 11에서도 88%의 높은 상대적인 효소 활성을 나타내었다. 효소의 금속 요구성을 조사한 결과, $Fe^{3+}$를 10 mM로 첨가하였을 때 최대 효소활성 증가를 보였다. 최대의 효소생산 조건을 탐색한 결과, 기본배지인 PY-ASW (peptone 0.5%, yeast extract 1.0%, artificial seawater)에 탄소원을 첨가하지 않는 것이 가장 높았으며, 질소원으로는 peptone 보다 beef extract, tryptone, casmino acids을 각각 첨가했을 때 활성이 21, 7, 4% 증가하였다. 이러한 결과를 종합해 볼 때 P. donghaensis HJ51이 생산하는 효소는 알칼리성 pH 환경 및 저온환경에서 활성이 필요한 분야에 응용이 가능할 것으로 사료된다.

Keywords

References

  1. Bajaj, B.K. and Jamwal, G. 2013. Thermostable alkaline protease production from Bacillus pumilus D-6 by using agro-residues as substrates. Adv. Enzyme Res. 1, 30-36. https://doi.org/10.4236/aer.2013.12003
  2. Bowman, J.P. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220-241. https://doi.org/10.3390/md504220
  3. Cha, I.T., Lim, H.J., and Roh, D.H. 2007. Isolation of Pseudoalteromonas sp. HJ47 from deep sea water of East Sea and characterization of its extracellular protease. Kor. J. Life Sci. 17, 272-278. https://doi.org/10.5352/JLS.2007.17.2.272
  4. Cha, I.T., Oh, Y.S., Cho, W.D., Lim, C.S., Lee, J.K., Lee, O.S., and Roh, D.H. 2009. Production condition and characterization of extracellular protease from Micrococcus sp. HJ19. Kor. J. Microbiol. 45, 69-73.
  5. Cho, W.D., Lee, J.K., Lim, C.S., Park, A.R., Oh, Y.S., and Roh, D.H. 2010. Isolation of Pseudoxanthomonas sp. WD12 and WD32 producing extracellular protease. Kor. J. Microbiol. 46, 63-69.
  6. Denkin, S.M. and Nelson, D.R. 1999. Induction of protease activity in Vibrio anguillarum by gastrointerstinal mucus. Appl. Environ. Microbiol. 65, 3555-3560.
  7. Fernandez, J., Mohedano, A.F., Polanco, M.J., Medina, M., and Nunez, M. 1996. Purification and characterization of an extracellular cysteine proteinase produced by Micrococcus sp. INIA 528. J. Appl. Microbiol. 81, 27-34. https://doi.org/10.1111/j.1365-2672.1996.tb04830.x
  8. Gupta, R., Beg, Q.K., and Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15-32. https://doi.org/10.1007/s00253-002-0975-y
  9. He, H., Chen, X., Li, J., Zhang, Y., and Gao, P. 2004. Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chem. 84, 307-311. https://doi.org/10.1016/S0308-8146(03)00242-5
  10. Holmstrom, C. and Kjelleberg, S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30, 285-293. https://doi.org/10.1111/j.1574-6941.1999.tb00656.x
  11. Huston, A.L., Krieger-brockett, B.B., and Deming, J.W. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2, 383-388. https://doi.org/10.1046/j.1462-2920.2000.00118.x
  12. Kulakova, L., Galkin, A., Kurihara, T., Yoshimura, T., and Esaki, N. 1999. Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 65, 611-617.
  13. Kwon, Y.T., Lee, H.H., and Rho, H.M. 1993. Cloning, expression and sequencing of the minor protease encoding gene from Serratia marcescens ATCC 21074. Gene 125, 75-80. https://doi.org/10.1016/0378-1119(93)90748-R
  14. Lee, S.O., Kato, J., Takiguchi, N., Kuroda, A., Ikeda, T., Mitsutani, A., and Ohtake, H. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66, 4334-4339. https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  15. Lee, Y.K., Oh, Y.S., and Roh, D.H. 2012. Production properties on extracellular protease from Chryseobacterium novel strain JK1. Kor. J. Microbiol. 48, 48-51. https://doi.org/10.7845/kjm.2012.48.1.048
  16. Lyman, J. and Fleming, R.H. 1940. Composition of sea water. J. Mar. Res. 3, 134-146.
  17. Nadeem, M., Qazi, J.I., Baig, S., and Syed, Q. 2008. Effect of medium composition on commercially important alkaline protease production by Bacillus licheniformis N-2. Food Technol. Biotechnol. 46, 388-394.
  18. Nascimento, W.C.A. and Martins, M.L.L. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz. J. Microbiol. 35, 91-96. https://doi.org/10.1590/S1517-83822004000100015
  19. Oh, Y.S., Park, A.R., Lee, J.K., Lim, C.S., Yoo, J.S., and Roh, D.H. 2011. Pseudoalteromonas donghaensis sp. Nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 351-355.
  20. Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635.
  21. Sanchez-porro, C., Mellado, E., Bertoldo, C., Antranikian, G., and Ventosa, A. 2003. Screening and characterization of the protease CP1 produced by moderately halophilic bacterium Pseudoalteromonas sp. Strain CP76. Extremophiles 7, 221-228.
  22. Secades, P. and Guijarro, J.A. 1990. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl. Environ. Microbiol. 65, 3969-3975.
  23. Thangam, E.B. and Rajkumar, G.S. 2002. Purification and characterization of alkaline protease from Alcaligenes faecalis. Biotechnol. Appl. Biochem. 35, 149-154. https://doi.org/10.1042/BA20010013
  24. Wang, Q.F., Hou, Y.H., Xu, Z., Miao, J.L., and Li, G.Y. 2008a. Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem. Engin. J. 38, 362-368. https://doi.org/10.1016/j.bej.2007.07.025
  25. Wang, S.L., Yang, C.H., Liang, T.W., and Yen, Y.H. 2008b. Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresour. Technol. 99, 3700-3707. https://doi.org/10.1016/j.biortech.2007.07.036
  26. Windle, H.J. and Kelleher, D. 1997. Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect. Immun. 65, 3132-3137.
  27. Yan, B.Q., Chen, X.L., Hou, X.Y., He, H., Zhou, B.C., and Zhang, Y.Z. 2009. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles 13, 725-733. https://doi.org/10.1007/s00792-009-0263-1
  28. Zeng, R., Zhang, R., Zhao, J., and Lin, N. 2003. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: Enzyme purification and characterization. Extremophiles 7, 335-337. https://doi.org/10.1007/s00792-003-0323-x

Cited by

  1. Characterization of extracellular protease from Pseudoxanthomonas sp. WD12 and WD32 vol.59, pp.4, 2016, https://doi.org/10.3839/jabc.2016.049
  2. Isolation and Characterization of Protease Producing B. amyloliquefaciens JH-35 from Food Waste vol.35, pp.4, 2016, https://doi.org/10.5338/KJEA.2016.35.4.40
  3. Complete genome sequence of Pseudoalteromonas donghaensis HJ51T isolated from seawater vol.54, pp.3, 2015, https://doi.org/10.7845/kjm.2018.8063