Browse > Article
http://dx.doi.org/10.4014/jmb.0809.509

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336  

Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University)
Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.7, 2009 , pp. 666-674 More about this Journal
Abstract
An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.
Keywords
Zymomonas mobilis; electrochemical bioreactor; neutral red; ethanol fermentation; hydrogen peroxidase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 An, H. J., R. K. Scopes, M. Rodriguez, K. F. Keshav, and L. O. Ingram. 1991. Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173: 5975-5982   DOI
2 Bringer, S., R. K. Finn, and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376-381   DOI
3 Hansson, L. and M. H. H$\ddot{a}$ggstrom. 1984. Effects of growth conditions on the activies of superoxide dismutase and NADHoxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10: 345-351   DOI
4 Hoppner, T. C. and H. W. Doelle. 1983. Purification and kinetic characterization of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur. J. Appl. Microbiol. Biotechnol. 17: 152-157   DOI
5 Osman, Y. A. and L. O. Ingram. 1987. Zymomonas mobilis mutants with an increased rate of alcohol production. Appl. Environ. Microbiol. 53: 1425-1432   PUBMED   ScienceOn
6 Pankova, L. M., Y. E. Shvinka, M. E. Beker, and E. E. Slava. 1985. Effect of aeration on Zymomonas mobilis metabolism. Mikrobiologiya 54: 141-145
7 Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85   ScienceOn
8 Sahm, H., S. Bringer-Meyer, and G. Sprenger. 1992. The genus Zymomonas, pp. 2287-2301. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes, Second Edition. Springer-Verlag, New York
9 Wecker, M. S. A. and R. R. Zall. 1987. Production of acetaldehyde by Zymomonas mobilis. Appl. Environ. Microbiol. 53: 2815-2820   PUBMED   ScienceOn
10 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
11 Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61
12 Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411   과학기술학회마을   ScienceOn
13 Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355   DOI   ScienceOn
14 Distefano, T. D., J. M. Gossett, and S. H. Zinder. 1992. Hydrogen as an electron donor for dechlorination of tetachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622-3629
15 Gibbs, J. and R. D. DeMoss. 1954. Anaerobic dissimilation of C14-labelled glucose and fructose by Pseudomonas lindneri. J. Biol. Chem. 207: 689-694   PUBMED
16 Nofsinger, G. W. and R. J. Bothast. 1981. Ethanol production by Zymomonas mobilis and Saccharomyces uvarum on aflatoxincontaminated and ammonia-detoxified corn. Can. J. Microbiol. 27: 162-167   DOI   PUBMED   ScienceOn
17 Scope, R. K. 1984. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-Keto-D-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis. Anal. Biochem. 136: 530-534   DOI   ScienceOn
18 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
19 Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol. Rev. 54: 131-142   DOI   ScienceOn
20 Higuchi, M., Y. Yamamoto, L. B. Poole, M. Shinmada, Y. Sato, N. Takahashi, and Y. Kamio. 1999. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181: 5940-5947   PUBMED
21 Ruiz-Argueso, T. and A. Rodriguez-Navarro. 1975. Microbiology of ripening honey. Appl. Microbiol. 30: 893-896   PUBMED
22 Teysset, M., F. de la Torre, and J. R. Garel. 2000. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: Involvement of an NADH oxidase in oxidative stress. Appl. Environ. Microbiol. 66: 262-267   DOI   ScienceOn
23 Scopes, R. K. and K. Griffiths-Smith. 1986. Fermentation capabilities of Zymomonas mobilis glycolytic enzymes. Biotechnol. Lett. 8: 653-656   DOI
24 Nishiyama, Y., V. Massey, Y. Anzai, T. Watanabe, T. Miyaji, T. Uchimura, M. Kozaki, H. Suzuki, and Y. Niimura. 1997. Purification and characterization of Sporolactobacillus inulinus NADH oxidase and its physiological role in aerobic metabolism of the bacterium. J. Ferment. Bioeng. 84: 22-27   DOI   ScienceOn
25 Park, D. H., M. Laiveniek, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-1917   PUBMED   ScienceOn
26 Amin, G. and H. Verachtert. 1982. Comparative study of ethanol production by immobilized-cell systems using Zymomonas mobilis or Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 14: 59-63   DOI
27 Bringer, S., H. Sahm, and W. Swyzen. 1984. Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotehnol. Bioeng. Symp. 14: 311-319
28 Lucey, C. A. and S. Condon. 1986. Active role of oxygen and NADH oxidase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX. J. Bacteriol. 179: 3944-3949
29 Ostovar, K. and P. G. Keeney. 1973. Isolation and characterization of microorganisms involved in the fermentation of Trinidad's cacao beans. J. Food Sci. 38: 611-617   DOI
30 Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH. Biotech. Lett. 29: 1277-1280   DOI   ScienceOn
31 Lopez de Felipe, F., M. J. C. Starrenburg, and J. Hugenholtz. 1997. The role NADH-oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis subsp. lactis MG1363. FEMS Microbiol. Lett. 156: 15-19   DOI   ScienceOn
32 Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304   DOI   ScienceOn
33 Rogers, P. L., K. J. Lee, M. L. Skotnicki, and D. E. Tribe. 1982. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23: 37-84