• Title/Summary/Keyword: Crosslinking Agent

Search Result 255, Processing Time 0.022 seconds

Preparation and Performance Analysis of Ophthalmic Polymer Using SWCNT and SWCCNT

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.735-740
    • /
    • 2019
  • The purpose of this study is to fabricate an ophthalmic lens by copolymerizing two types of carbon nanotubes and hydrophilic hydrogel lens materials, and to investigate its application as an ophthalmic lens material by analyzing its physical properties and antimicrobial effect. For polymerization, HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate), a crosslinking agent, and AIBN (azobisisobutyronitrile), an initiator, are used as a basic combination, and a single-walled carbon nanotube and a single-walled, carboxylic-acid-functionalized carbon nanotube are used as additives. To analyze the physical properties, the water content, refractive index, breaking strength, and antimicrobial effect of the fabricated lenses are measured. The fabricated lenses satisfies all the basic properties of the basic hydrogel ophthalmic lens. The water content increases with increasing amount of additive and decreases with addition of 0.2 % ratio of nanoparticles. The refractive index is inversely proportional to the water content result. As a result of the antimicrobial test of the fabricated lens, the addition of carbon nanotubes shows an excellent antimicrobial effect. Therefore, it is considered that the fabricated lens can be applied as a functional material for basic ophthalmic hydrogel lenses.

Effects of Reducing Agents on Textural Changes and Protein Modification in Extruded Wheat Gluten (압출성형시 환원제 첨가에 의한 밀가루 글루텐의 조직 변화와 단백질의 변성)

  • 고봉경
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.213-219
    • /
    • 1996
  • Addition of reducing agents during extrusion markedly affected physical and chemical properties of wheat flour and gluten extrudates. Expansion at the die was increased for wheat flour and gluten extrudates. Organic materials containing sulfur were evaporated as a flavor from gluten at the die and total sulfur contents were decreased. Physical shape was different for gluten extrudates without reducing agents. It was difficult to form the long strand of gluten extrudate without cooling die. Hydroquinone accelerated cell breakdown and produced more irregular shape of extrudate. However, addition of cysteine decreased the cell breakdown and produced the long strand of gluten extrudates. Chemical reactions of reducing agents such as cysteine and hydroquinone were different for high content (<80%) of wheat gluten. It was assumed that reducing agents donated hydrogen to inhibit the formation of disulfide crosslinking, decreased the dough strength and produced the broken cell and irregular shape of extrudates. Whereas, cysteine reacted as a binder as well as reducing agent and formed long strands. The evidence of reaction of reducing agents was shown from the fact that non-protein disulfide was increased and protein disulfide was slightly decreased from cysteine added gluten extrudate.

  • PDF

DFA IV를 생산하는 levan fructotransferase의 포괄고정화

  • Im, Seung;Lee, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.567-570
    • /
    • 2000
  • The condition of immobilization of the partially purified levan fructotransferase and the properties of the immobilized enzyme was investigated. Levan fructotransferase was immobilized on ${\kappa}\;-carrageenan$ beads by entrapment method. The optimal ${\kappa}\;-carrageenan$ concentration was obtained 2%(w/v) (or the matrix. At that time, immobilized enzymes(0.81 units) have relative low activity compare with soluble enzyme(7.7 units). To immobilized and soluble enzyme, optimal activity temperature and pH were measured $55^{\circ}C$, 6.0 in sodium phosphate buffer 20mM solution. If crosslinking agent was added, proper concentration was 0.5%(v/v). At $37^{\circ}C$, immobilized and soluble enzyme converted levan to oligofructose and DFA IV, and the conversion ratio was 32% and 61% at 60 hr.

  • PDF

Studies on Cure Behavior and Thermal Stability of Epoxy/PMR-15 Polyimide Blend System (에폭시/PMR-15 폴리이미드 블렌드계의 경화동력학 및 열안정성에 관한 연구)

  • Lee, Jae-Rock;Lee, Hwa-Young;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.265-268
    • /
    • 2002
  • In this work, the blend system of epoxy and PMR-15 polyimide is investigated in terms of the cure behaviors and thermal stabilities. The cure behaviors are studied in DSC measurements and thermal stabilities are also carried out by TGA analysis. DDM (4, 4'-diamino diphenyl methane) is used as curing agent for EP and the content of PMR-15 is varied within 0, 5, 10, 35, and 20 phr to neat EP. As a result, the cure activation energy ($E_a$) is increased at 10 phr of PMR-15, compared with that of neat EP. From the TGA results of EP/PMR-15 blend system, the thermal stabilities based in the initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT) are increased with increasing the PMR-15 content. The fracture toughness, measured in the context of critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$), shows a similar behavior with $E_a$. This result is probably due to the crosslinking developed by the interactions between intermolecules in the polymer chains.

  • PDF

Natural Dyeing of Chitosan Crossinked Cotton Fabrics(III) - Amur cork tree - (키토산 가교 처리된 면직물의 천연염색에 관한 연구(III) - 황벽을 중심으로 -)

  • Kwak, Mi-Jung;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.544-551
    • /
    • 2008
  • In this study, the colorants of Amur cork tree were extracted with boiling water. Chitosan crosslinked cotton fabrics have been dyed with aqueous extract of Amur cork tree and their dyeabilities on the fabrics were studied. Additionally the fastness to washing and light were also investigated. Cotton fabrics were treated with a crosslinking agent epichlorohydrin in the presence of chitosan to provide the cotton fabrics the dyeing properties of natural dye(Amur cork tree) by the chemical linking of chitosan to the cellulose structure. This process was applied by means of the conventional mercerizing process. The chitosan finishing and durable press finishing of the cotton fabrics occurred simultaneously in the mercerization bath. On the surface color change, the fabric of no-chitosan finished and no-mordanted has greenish yellow. The more crosslinked chitosan on cotton fabrics has the more turned down greenish on the surface color, as increasing the concentration of chitosan, greenish color turn down to the yellow close the 90o hue angle. In all sorts of fabrics, dyeability(K/S) is slightly affected by the number of manufacturing process and the concentration of chitosan. But only mercerized cotton fabric has higher dyeability (K/S) than mordant treated cotton fabrics. Wash fastness has little different results by each condition, but almost similar values. Light fastness was improved with chitosan treatment on cotton fabric.

The Functional Effects of Polyester treated with silk sericin (견 세리신을 이용한 폴리에스텔의 기능성 향상)

  • 김종호;김영대;강경돈;우순옥;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.1
    • /
    • pp.37-41
    • /
    • 2002
  • The attaching treatment of sericin onto polyester fiber was attempted to improve its sanitary properties. Generally, sericin, a gummy material covering the outer layer of silk filament, is subjected to be removed during degumming process of silk textile process. For this study, sericin particle dissolved within the degumming waste water could be collected by sedimentation of polyaluminium chloride. It was revealed that sericin particle were attached onto the surface of polyester fiber evenly by treatment of glutaraldehyde, a crosslinking agent. A frictional static charge of the treated polyester fabric could be improved, while its hygroscopic property was little changed.

Synthesis and Characterization of Poly(N-isopropylacrylamide) Containing Polydimethylsiloxane (Polydimethylsiloxane을 함유한 poly(N-isopropylacrylamide)? 합성 및 성질)

  • Kim, Young-Sung;Bae, Min-Ae;Yoon, Koo-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.230-235
    • /
    • 2001
  • Poly(N-isopropylacrylamide) (PNIPAAm) containing polydimethylsiloxane (PDMS) was synthesized using PDMS as crosslinking agent, and characterized by IR and DSC. It seems that the copolymer has separated phases, PNIPAAm and PDMS. The $T_g$ of PNIPAAm was decreased in accordance with the increase of PDMS-contents. The swelling behavior of polymer in water was examined with the function of temperature and PDMS-contents as well. The equilibrium swelling ratio of polymer in water was decreased with increasing PDMS-contents, but lower critical solution temperature (LCST) was not significantly affected by the incorporated PDMS-contents.

  • PDF

Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties

  • Prabhakar, M.N.;Song, Jung Il
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.196-200
    • /
    • 2014
  • A novel, simple and totally recyclable method has been developed for the synthesis of nontoxic, biocompatible and biodegradable bio-composite films from soy protein and silk protein. Bio films are defined as flexible films prepared from biological materials such as protein. These materials have potential application in medical and food as a packaging material. Their use depends on various parameters such as mechanical (strength and modulus), thermal, among others. In this study, prepare and characterization of bio films made from Soy Protein Isolate (SPI) (matrix) and Silk Fiber (SF) (reinforcement) through solution casting method by the addition of plasticizer and crosslinking agent. The obtained SPI and SPI/SF composites were subsequently subjected to evaluate their mechanical and thermal properties by using Universal Testing Machine and Thermal Gravimetric Analyzer respectively. The tensile testing showed significant improvements in strength with increasing amount of SF content and the % elongation at break of the composites of the SPI/SF was lower than that of the matrix. Though the interfacial bonding was moderate, the improvement in tensile strength and modulus was attributed to the higher tensile properties of the silk fiber.

Natural Dyeing of Chitosan Crossinked Cotton Fabrics(IV) - Cochineal - (키토산 가교 처리된 면직물의 천연염색에 관한 연구(IV) - 코치닐을 중심으로 -)

  • Kwak, Mi-Jung;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • The purpose of this study was investigate the dyeing property on chitosan crosslinked cotton fabric with cochineal at variable conditions. Chitosan crosslinked cotton fabrics were manufactured by crosslinking agent epichlorohydrin in the presence of chitosan. Chitosan crosslinked cotton fabrics dyed using cochineal were post-mordanted using Al, Fe and Cu. The dyeability(K/S) of chitosan crosslinked cotton fabrics were measured by computer color matching. Additionally the fastness to washing and light were also investigated. The dye-uptake of chitosan crosslinked cotton fabrics increased with the dyeing time. The saturated dyeing time was about 20minutes at $60^{\circ}C$. The dyeability(K/S) was remarkably increased with increasing content of crosslinked chitosan because of having a amine group of chitosan. Chitosan crosslinked cotton fabrics were dyed yellowish red by non and Fe mordanting, blueish red by Al and Cu mordanting, respectively. The washing and light fastness were increased by mordanting, especially Cu and Fe mordanting.

Synthesis and Swelling Kinetics of a Cross-Linked pH-Sensitive Ternary Copolymer Gel System (pH-민감성 삼성분계 공중합체 젤의 합성 및 팽윤 속도론)

  • Zafar, Zafar Iqbal;Malana, M.A.;Pervez, H.;Shad, M.A.;Momma, K.
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.219-229
    • /
    • 2008
  • A pH sensitive ternary copolymer gel was synthesized in the presence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through radical polymerization of vinyl acetate (VA), acrylic acid (AA) and methyl acrylate(MA) with a weight ratio of 1 : 1.3 : 1. A number of experiments were carried out to determine the swelling behavior of the gel under a variety of pH conditions of the swelling medium. As the pH of the swelling medium was changed from 1.0 to 8.0 at $37^{\circ}C$, the gel showed a shift in the pH-dependent swelling behavior from Fickian (n=0.3447) to non-Fickian (n=0.9125). The resulting swelling parameters were analyzed using graphical and statistical methods. The results showed that the swelling of the gel was controlled by the pH of the medium, i.e. $n=n_o{\exp}(S_{C}pH)$, where n is the diffusion exponent, $n_o(=28.9645{\times}10^{-2})$ is the pre-exponential factor and $S_C$(=0.1417) is pH sensitivity coefficient. The swelling behavior of the gel was also examined in aliphatic alcohols. The results showed that the rate of swelling increased with increasing number of carbon atoms in the alcoholic molecular chain.