• Title/Summary/Keyword: Cross-section specimen

Search Result 144, Processing Time 0.026 seconds

A Study on the boronizing treatment of hot forgeability of STD61 steel by the paste method (열간단조용 STD 61강의 Boronizing 처리에 의한 표면 물성 변화)

  • 이영생
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.190-196
    • /
    • 1999
  • Hot forgeability of STD 61 steel was boronzed in boronizing paste mainly consisted of B4C and Na2B4O7 at various temperatures and times. Microhardness and thickness of boride layers were measured and distributions of B, Si, Cr and V on the cross section of specimen were observed by EPMA line analysis. Microscopic examination and results of EPMA showed that the boride layer consisted of two layers outer layer of FeB and inner layer of Fe2B. Microhardness of these boride layers was in the range of Hv 1800~2300. Thickness of boride layer increased with times and temperatures. Si-rich $\alpha$ layer was formed between boride layer and matrix. Element such as Cr concentration as Cr23(B, C)6 beneath the boride layer.

  • PDF

Reheating of Semi-Solid Aluminum Alloys and Mechanical Properties of Thixoforged Product (반용융 알루미늄 합금의 재가열 및 Thixoforging 부품의 기계적 성질)

  • 정홍규;강충길
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most imposrtant parts. To obtain a fine globular microstructure in cross section of billet, the optimal design of the induction coil for variation of alloys and specimen sizes is necessary. For the thixo-forging process the construction of the reheating data base is very important, because the reheating conditions are different for variation of SSM and billet sizes. So in this study, the optimal coil design of A356 (ALTHIX) and Aι2024 with d×ι=60×90 (mm) to obtain the globular microstructure is theoretically proposed. The suitability of an optimal coil design will be demonstrated by reheating experiments. Finally, the thixoformability of an arbitrarily shaped product is evaluated by its forming variables. The defects and mechanical properties are also investigated.

  • PDF

Studies on the Collapse of four domestic Fagaceae Species (우리나라산(産) 참나무과(科) 4수종(樹種)의 Collapse에 관한 연구(硏究))

  • Park, Jong-Su;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.37-44
    • /
    • 1993
  • The collapse of four domestic Fagaceae species was observed in relation with their moisture content(MC), basic density, P (Percent of moisture content saturation of the wood) and Q (Percent of cell cavity volume containing water) and the variation of collapse phenomenon in the cross section of stem was also investigated. The results were summarized as follows : The values of collapse in each species were great in order of Quercus dentata, Quercus variabilis, Quercus aliena and Quercus mongolica and the values were higher in heartwood than in sapwood in all of specimen. MC, basic density, P and Q were important factors which affected on the occurance of collapse and the collapse phenomenon was decreased from pith to bark.

  • PDF

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

A Study on Plastic Fatigue of Structural Steel Elements under Cyclic Loading (반복하중을 받는 강구조 요소의 소성피로에 관한 연구)

  • Park, Yeon Soo;Park, Sun Joon;Kang, Sung Hoo;Yoon, Young Phil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.193-204
    • /
    • 1997
  • In order to quantify the relationships of the important physical factors relating failure to strong earthquake loading, the plastic fatigue problems for structural components under repeated loading were reviewed first. A new concept of very low cycle fatigue failure for structural components under severe cyclic excitations as in strong earthquakes was represented. Also, an experimental study was made of the very low cycle fatigue failure of structural steel elements. It was attempted to realize the ultimate failure in the course of loading repetitions of the order of several to twenty. The test specimen had a form of rectangular plate, representing a thin-plated element in a steel member as wide-flange cross section. It was subjected to uniaxial loading repeatedly, until complete failure takes place after undergoing inelastic buckling, plastic elongation and/or their combination. It was seen as a result that the state of the ultimate failure is closely related to the maximum strain at the extreme fiber in the cross section.

  • PDF

Properties of Pinus densiflora Timber Wood by High Temperature Linseed Oil Treatment (고온아마인유처리에 의한 소나무재의 특성)

  • Lee, Dong-heub;Lee, Myung-Jae;Oh, Hyung-Min;Son, Dong-won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.50-57
    • /
    • 2004
  • This study attempted to evaluate the water repellency and drying effectiveness of linseed oil treated-solid wood at high temperature by immersion. The moisture content of green wood (Pinus densiflora) sample (above 90%) was reduced about 10% after 6 hours treatment at 150℃. When the treated samples were cut into cross section along the length, it was observed that the linseed oil penetrated into up to 20% of the sample cross section area in all locations. However, a strength loss of the specimen was not detected. The pre-drilling before linseed oil treatment was effective in reducing the defects such as checks and splits, and improved the linseed oil penetration into all samples from the surfaces. The result of water absorption test of treated-wood showed that the water repellent efficacy of treated-wood was greater than that of the control. The anti-fungal activity of treated samples using five sap stains and thee decay fungi was not detected in broad-spectrum toxic mechanism. However, decay test using white rot fungi (Tyromyces palustris) and brown rot fungi (Trametes versicolor) showed that the treated sample has a decay resistance to these two fungi.

A Study on the Effects of Cross-sectional Dimension Change of Brake Pad Specimen on the Uncertainty of the Compressive Strength (제동 패드의 압축강도시편의 단면치수변화가 압축강도 불확도에 미치는 영향 분석)

  • Park, Soo Hong;Park, Jin Kyu;Kim, Si Wan;Park, Chan Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.223-227
    • /
    • 2014
  • The brake pad is one of the basic brake elements of a railway vehicle. It accomplishes braking action by friction between a pad and a brake disc. Because the brake pad must endure specified high pressure, the compressive strength is managed as the main performance factor. The standards for measuring the compressive strength of brake pads are KRS, KRCS, and KRT. These standards specify the size of the test piece for measuring compressive strength as $20mm{\times}10mm{\times}15mm$ ($W{\times}D{\times}H$). To reduce the uncertainty of the compressive strength, factors of uncertainty were analyzed. The results show that changing the dimensions of the cross section was useful to reduce the uncertainty. The uncertainty due to the new cross-sectional dimension shows the effectiveness of reducing uncertainty.

Thermal and Mechanical Properties of Poly(lactic acid) Specimens Fabricated by Various Equal-channel Angular Extrusion Processes (다양한 방식의 등통로각압축공정으로 가공된 Poly(lactic acid) 시편들의 열 및 기계적 물성)

  • Liu, Xu-Yan;Jung, Si-In;Choi, Ho-Suk;Oh, Jun-Taek;Kim, Jong-Kuk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.206-210
    • /
    • 2011
  • We fabricated rod-like poly(lactic acid)(PLA) specimens through applying various methods of equal-channel angular extrusion(ECAE) process and investigated the change of thermal and mechanical properties of specimens before and after each ECAE process. Combining three re-injection routes(A, BC, and C) and three pass counts(1, 2 and 4) allowed us to fabricate 7 different PLA specimens. Thermal properties of each specimen were measured by both differential scanning calorimeter and thermo-gravimetric analyzer. Shear strains of each specimen with respect to applied loads were measured by indentation hardness tester. Field emmision scanning electron microscopy was used to observe internal microstructure of cross-section of each specimen. The observed microstructures qualitatively supported the explanation of hardness test results. Among 7 specimens, PLA-P2A showed the biggest shear strain probably due to its dense microstructure.

The Characteristics Analysis of Track of Laser Metal Deposition Using AISI M2 Powder (AISI M2 파우더를 이용한 레이저 메탈 디포지션의 트랙 특성 분석)

  • Kim, WonHyuck;Song, MyungHwan;Park, InDuck;Kang, DaeMin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • In this paper, the characteristics analysis of LMD track, such as including track structure, track wear resistance and track thickness, were analyzed to enhance the deposition efficiency using a diode-pumped disk laser. SKD61 hot work steel plate and Fe based AISI M2 alloy were used as a the substrate and powder for the LMD process, respectively. The laser power, track pitch and powder feed rate among LMD parameters were adopted to estimate the deposition efficiency. As the laser power is increased, heat input and melting pool on the substrate is grown also increases, so resulting in the increased LMD track thickness was increased. Through EPMA mapping analysis of the cross-section in the LMD track, it was observed that all the elements are evenly distributed inside. Therefore, the entire hardness in the LMD track is expected to be almost uniform regardless of location. The characteristics of the LMD specimen were excellent compared to the STD11 specimen in terms of the wear track width and the wear rate as well as the coefficient of friction. Especially the wear rate of LMD specimen has been significantly reduced by 60 % or more. From Based on the experimental results, the prediction formula of LMD thickness was calculated by using laser power, track pitch and powder feed rate.