• Title/Summary/Keyword: Cross-linking time

Search Result 107, Processing Time 0.035 seconds

A study on affecting factors by using dolly in coating adhesion test (돌리를 이용한 도막 부착력 시험의 영향 인자에 관한 연구)

  • Baek, Yun-Ho;Son, Seong-Mo;Park, Chung-Seo
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.186-194
    • /
    • 2014
  • Establishment of adhesion strength measurement procedure for marine epoxy coatings was conducted in order to ensure reliability of the test results. It was found that (1) the increase in thickness of the substrates would induce increase of pull-off strength. Especially, the increase in adhesion strength with the substrate thickness increment was attributed to the transition of stress mode to the pure tensile mode excluding bending effect. (2) The longer curing time, the higher pull-off strength. It may be due to higher cross-linking density of the coating (3) The pull-off strength increases as coating thickness increases due to the diminishment of bending effect (4) The longer drying time after water immersion, the higher pull-off strength. It may be due to the evaporation of water molecule at the coating-substrate interface.

Anticorrosive Coating Material with Dual Self-healing Capability for Steel Coating (이중 자기치유 메커니즘을 통한 강판의 내부식성 코팅)

  • Lee, Hyang Moo;Yun, Sumin;Kim, Jin Chul;Cho, Soo Hyoun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2021
  • Steel plates coated by self-healable polymer still can be rusted since it takes time to be healed. In this study, dual self-healing coating material is developed using corrosion inhibitor (DTBEDA) which can form hindered urea (HUB) as reversible cross-linking bond at the same time. Developed dual self-healing polymer is coated on steel plate, and scratch healing property was investigated by surgical blades and nano/micro indentation tester. The anticorrosion effect of DTBEDA was investigated by electrochemical impedance spectroscopy (EIS).

Development of a Method for Rapid Analysis of DNA Hybridization (측방유동방식 신속 DNA 교잡 분석법의 개발)

  • 정동석;최의열
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.114-117
    • /
    • 2003
  • In molecular biology, it is necessary to develop an easy and rapid method to identify a specific DNA sequence. Though Southern and Northern blot techniques have been used widely for the analysis of gene structure and function, those methods are inconvenient in the points that we need to control incubation temperature, time, and other parameters to get the final result. In this study, we report a new method for the rapid analysis of specific DNA sequence with the modification of an immunochromatographic method. The lateral flow DNA analysis strip is composed of a sample pad, a nitrocellulose membrane for the separation and propagation of analytes, and an absorption pad for the generation of capillary action. Capture DNA was immobilized on the membrane by UV cross-linking and target DNA was labeled with Cy-5 for signaling. The samples containing target DNA were applied onto the sample pad, incubated for 15 min for separation, and scanned with a GSI fluorescence scanner. Though the hybridization reaction occurs in a short time without any washing steps, there appears to be little cross hybridization between the different sequences. The result showed a possibility that the new method can be used for the rapid identification of specific DNA sequence among the samples.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

Controlled Release of Cefadroxil from Chitosan Beads in Dogs (개에서 키토산 비드를 이용한 cefadroxil 방출제어)

  • Kim Dae-Keun;Park Seung-Chun;Kim Tae-Wan;Lee Keun-Woo;Oh Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • The purpose of this study is to investigate the effects of formulation variables on the release of cefadroxil form chitosan beads, to optimize the preparation of chitosan beads loaded with the drug for controlled release, and to evaluate the drug release form chitosan beads in dogs. Chitosan beads were prepared with tripolyphosphate (TPP) by ionic cross-linking and those sizes were less than 1 mm in diameter. The release behaviour of cefadroxil was affected various factors. As pH of TPP solutions decreased, the entrapment efficiency of cefadroxil increased, whereas the release of cefadroxil decreased. The release rate of cefadroxil form chitosan beads decreaed with the increased TPP solution concentration. When cross-linking time increased, the release of the drug from chitosan beads decreased. The cefadroxil loaded beads were implanted to 4 mixed breed dogs. The concentration of cefadroxil in sera due to chitosan beads implanted with 50 mg/kg body weight of beads was sustained more than 1 ug/ml for the whole 7 days period. Therefore, the cefadroxil loaded beads can be used successfully in pyoderma of dogs. These results indicate that chitosan beads may become a potential delivery system to control the release of drug.

Viscoelastic Properties of MF/PVAc Hybrid Resins as Adhesive for Engineered Flooring by Dynamic Mechanical Thermal Analysis

  • Kim, Sumin;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2006
  • The viscoelastic properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by dynamic mechanical thermal analysis (DMTA). Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The DMTA thermogram of MF resin showed that the storage modulus (E') increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. The storage modulus (E') of MF resin increased both as a function of increasing temperature and with increasing heating rate. From isothermal DMTA results, peak $T_{tan{\delta}}$ values, maximum value of loss modulus (E") and the rigidities (${\Delta}E$) of MF/PVAc blends at room temperature as a function of open time, peak $T_{tan{\delta}}$ and maximum loss modulus (E") values were found to increase with blend MF content. Moreover, the rigidities of the 70:30 and 50:50 MF/PVAc blends were higher than those of the other blends, especially of 100% PVAc or MF. We concluded that blends the MF/PVAc blend ratios correlate during the adhesion process.

Topology Optimization of the Decking Unit in the Aluminum Bass Boat and Strength Verification using the FEM-program

  • Seo, Kwang-Cheol;Gwak, Jin;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.367-372
    • /
    • 2018
  • The objective of this paper is to optimize the cross-section of aluminum decking units used in the bass boats under operating conditions, and to verify the optimized model from the results via by ANSYS software. Aluminum decking unit is needed to endure specific loading while leisure activity and sailing. For a stiffer and more cost-neutral aluminum decking unit, optimization is often considered in the naval and marine industries. This optimization of the aluminum decking unit is performed using the ANSYS program, which is based on the topology optimization method. The generation of finite element models and stress evaluations are conducted using the ANSYS Multiphysics module, which is based on the Finite Element Method (FEM). Through such a series of studies, it was possible to determine the most suitable case for satisfying the structural strength found among the phase-optimized aluminum deck units in bass boats. From these optimization results, CASE 1 shows the best solution in comparison with the other cases for this optimization. By linking the topology optimization with the structural strength analysis, the optimal solution can be found in a relatively short amount of time, and these procedures are expected to be applicable to many fields of engineering.

Removal of Uranium in Water by Beads of Chitosan the Graft-Copolymerized with Itaconic Acid (Itaconic acid로 그라프트 공중합한 Chitosan의 beads를 이용한 수계 우라늄의 제거)

  • Kang Soo-Jung;Kim Nam-Ki;Kim Jae-Woo;Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.47-55
    • /
    • 2005
  • The World Health Organization(WHO, 1998) and the United States Environmental Protection Agency (USEPA, 1992) recommended $2{\mu}\;guranium/{\ell}$ in drinking water as a guideline. The Korea Institute for Environmental Research recently reported that the radioactive pollution in ground water was almost negligible In Korea$(1999\~2002)$. Cs were cast into beads(2mm in wet form) and treated with hexamethylene diisocyanate for stability in acidic aqueous solution through cross-linking of the beads surfaces. The removal study was carried out in a static batch system and a flow system. In the static system, a certain amount of sample water was confined in a vessel and beads(dry weight 0.5g) were packed into it in order to adsorb uranium for a certain period of time. Afterwards the remaining uranium in water vessel was determined by inductively coupled plasma mass spectrometry. The effective pH range was 4 to 8. The smaller the size of beads, the better the removal efficiency. Furthemore, the lower the flow rates, the higher the removal efficiency. The results showed that chitosan beads can be effectively used for the removal of uranium contained in water.

Increased Association of ${\alpha}$-synuclein to Perturbed Cellular Membranes

  • Kim, Yoon-Suk;Lee, Seung-Jae
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.167-171
    • /
    • 2011
  • [ ${\alpha}$ ]synuclein (${\alpha}$-syn) is implicated in the pathogenesis of Parkinson's disease (PD) and other related diseases. We have previously reported that ${\alpha}$-syn binds to the cell membranes in a transient and reversible manner. However, little is known about the physiologic function and/or consequence of this association. Here, we examined whether chemically induced perturbations to the cellular membranes enhance the binding of ${\alpha}$-syn, based on hypothesis that ${\alpha}$-syn may play a role in maintenance of membrane integrity or repair. We induced membrane perturbations or alterations in ${\alpha}$-syn-overexpressing human neuroblastoma cells (SH-SY5Y) by treating the cells with hydrogen peroxide ($H_2O_2$) or oleic acid. In addition, membranes fractionated from these cells were perturbed by treating them with proteinase K or chloroform. Dynamic interaction of ${\alpha}$-syn to the membranes was analyzed by the chemical cross-linking assay that we developed in the previous study. We found that membrane interaction of ${\alpha}$-syn was increased upon treatment with membrane-perturbing reagents in a dose and time dependent manner. These results suggest that perturbations in the cellular membranes cause increased binding of ${\alpha}$-syn, and this may have significant implication in the physiological function of ${\alpha}$-syn in cells.

Preparation and Characterization of Antibacterial Dental Resin Cement Material

  • Kim, Duck-Hyun;Jung, Hwi-Su;Kim, Sun-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • Bis-GMA, TEGDMA, and camphorquinone were used as the main material, cross-linking agent, and photoinitiator, respectively. In addition, 2-isocyanatoethyl methacrylate was used as an additive for high strength, while the 3-hydroxypyridine was used as an additive for antibacterial activity. Photopolymerization was also carried out at a 440-480 nm wavelength and at about $1000mW/cm^2$ intensity for about 40 seconds. The breaking strength measurement of the samples showed that the breaking strength increased along with increasing the addition ratio of IEM, while it took less time until the polymerization was complete, thereby suggesting that the degree of polymerization has the tendency to increase. And also, compared to the size of the clear zone formed by ampicillin, the 3-hydroxypyridine group exhibited antimicrobial activity induced by ampicillin. The results of this study suggest that the use of 2-isocyanatoethyl methacrylate as an additive for high strength and 3-hydroxypyridine as an additive for improved antibacterial activity would improve the usability of the fabricated polymer as a dental resin cement material with high functionality.