• Title/Summary/Keyword: Cross-layer protocol

Search Result 73, Processing Time 0.022 seconds

Cross-Layer Protocol Design for Effective Video Transmission in Wireless Ad hoc Networks (무선 에드 혹 네트워크에서 비디오 전송에 효율적인 Cross-Layer 프로토콜 설계)

  • Seo Jee-Young;Cho Eun-Hee;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.144-153
    • /
    • 2006
  • In this paper, we propose an efficient video data transmission protocol using the cross-layer approach in ad hoc networks. Due to node movement, the MANET is frequently changing path and each path has different transmission rate so that it has low performance when transmitters select a constant transmission late at the encoding time. Because MANET is running limited energy, efficient energy management is important because it increases network life time and network throughput. Therefore we need an effective video transmission method that considers physical layer channelstatistics, node's energy status, and network topology changes at the same time unlike the OSI recommendation protocol in that each layer isindependent and hard to transmit adaptively video data according to the network conditions. Therefore, in this paper we propose a cross-layer effective video transmission protocol and mechanism that can select an optimal path using multilayer information such as node's residual energy, channel condition and hop counts and can determine the adequate coding rate adaptively.

A Cross Layer Protocol based on IEEE 802.15.4 for Improving Energy Efficiency (에너지 효율 개선을 위한 IEEE 802.15.4 기반의 Cross Layer Protocol)

  • Jeong, Pil-Seong;Kim, Hwa-Sung;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.669-677
    • /
    • 2011
  • Superframe in IEEE 802.15.4 Standard is subdivided into an active period and an inactive period to reduce energy consumption. But communication nodes use same data transmission range in an active period, thus communication nodes spend a lot of energy to send data another nodes. In this paper, we proposed reduce energy consumption algorithm that nodes use different transmission power. Cordinator split transmission area into four group and transmit becon message to nodes. Nodes adjust transmission power according to becon message and wates lowe energy than normal nodes. We proposed energy-efficient cross layer protocol that have different PAN (Personal Area Network) by four range group.

The study of Cross Layer Protocol for Energy Consumption In Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율을 고려한 Cross Layer Protocol에 대한 연구)

  • Kim, Hyun-Seo;Jung, Won-Soo;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.503-504
    • /
    • 2007
  • The most Important thing in Sensor Network Design is a Energy Efficiency. Limited sources of Sensor Mote tan occur merging of Protocol. In this paper, we proposed Cross Layer Protocol for Energy Efficienty. The proposed protocol can increase the network life time using multi hop transmission. sensor network should use multi hop communication and small radius because radio in wireless communication is the most spendable thing in sensor network.

  • PDF

Cross-Layer Analysis of Wireless TCP/ARQ Systems over Correlated Channels

  • Wu Yi;Niu Zhisheng;Zheng Junli
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • In this paper, we present a cross-layer analysis of wireless TCP systems over correlated channels. The effects of error correlation on the behavior of link retransmission strategy and the end-to-end throughput of TCP layer are investigated. Based on the cross-layer analysis, an efficient refinement of link layer protocol is proposed by consciously utilizing the information of channel correlations, which leads to the performance improvement of wireless TCP systems.

Performance Evaluation of PEP Based on Cross-Layer in Satellite Communication System (위성 통신에서 Cross-layer 기반 PEP 성능 평가)

  • Kim, Jong-Mu;Nathnael, Gebregziabher W.;Lee, Kyu-Hyan;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.58-65
    • /
    • 2016
  • Satellite communication is a wide area network (WAN) which provides communication service worldwide. However, the performance of TCP can be seriously degraded in the satellite networks due to limited bandwidth, long round-trip time (RTT) and high bit error rate (BER) over satellite links. In order to improve the performance of TCP, this paper proposes cross-layer Performance Enhancing Proxy (PEP) in digital video broadcasting-return channel via satellite (DVB-RCS) networks. The proposed protocol sets TCP Congestion Window (CWND) size by using satellite resource allocation information exchanged between TCP and the link-layer. we implement PEP testbed based on Linux to evaluate the performance of the proposed protocol. The simulation results show that the proposed protocol performs better than standard TCP both in single and multiple sessions in variant BER, because the proposed protocol sets TCP CWND size by using satellite resource allocation.

Cross-Layer Design for Mobile Internet Services in Cellular Communications Systems

  • Jeong, Dong-Geun
    • Information and Communications Magazine
    • /
    • v.24 no.2
    • /
    • pp.64-73
    • /
    • 2007
  • Recently, cross-layer design approach has been greatly attracting researchers' attention as an alternative for improving the performance of wireless data networks. The main reason why cross-layer approaches are particularly well suited for wireless networks is that there exists direct coupling between physical layer and upper layers. Therefore, with cross-layer approach, the protocol designers try to exploit the interaction between layers and promote adaptability at all layers, based on information exchange between layers. In this article we focus on the cross-layer engineering for high data-rate mobile Internet services through cellular networks. First, the general considerations in cross-layer engineering are outlined. Then, we discuss the common approach in literatures, which mainly deals with adaptability in physical and medium access control layer. Finally, we show that the cross-layer engineering taking account of all layers is more adequate for the mobile Internet services cellular network.

An Energy Efficient Transmission Scheme based on Cross-Layer for Wired and Wireless Networks (유.무선 혼합망에서 Cross-Layer기반의 에너지 효율적인 전송 기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.435-445
    • /
    • 2007
  • Snoop protocol is one of the efficient schemes to compensate TCP packet loss and enhance TCP throughput in wired-cum-wireless networks. However, Snoop protocol has a problem: it cannot perform local retransmission efficiently under the bursty-error prone wireless link. To solve this problem, SACK-Aware-Snoop and SNACK mechanism have been proposed. These approaches improve the performance by using SACK option field between base station and mobile host. However in the wireless channel with high packet loss rate, SACK-Aware-Snoop and SNACK mechanism do not work well because of two reason: (a) end-to-end performance is degraded because duplicate ACKs themself can be lost in the presence of bursty error, (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily because of SACK option field in the wireless link. In this paper, we propose a new local retransmission scheme based on Cross-layer approach, called Cross-layer Snoop(C-Snoop) protocol, to solve the limitation of previous localized link layer schemes. C-Snoop protocol includes caching lost TCP data and performing local retransmission based on a few policies dealing with MAC-layer's timeout and local retransmission timeout. From the simulation result, we could see more improved TCP throughput and energy efficiency than previous mechanisms.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

A Cross-layer Link Adaptive HD Video Transmission Scheme in WiMedia D-MAC based UWB Systems

  • Joo, Yang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1464-1474
    • /
    • 2012
  • In this paper, we propose a QoS (Quality of Service)-aware and cooperative resource reservation scheme using cross-layer link adaptation for wireless high definition video transmission through UWB (Ultra Wide Band) network with D-MAC (Distributed Medium Access Control). A wireless high definition video transmission system usually requires stable high throughput even without line-of-sight, e.g., a destination device in another room separated by a wall. Since the WiMedia D-MAC supporting DRP (Distributed Reservation Protocol) scheme causes lots of DRP resource reservation conflicts due to failure of beacon detection in wireless channel environment, overall performances of the WiMedia D-MAC can be deteriorated. And the current WiMedia MAC standard has not considered QoS provisioning even though QoS parameters such as a range of service rates are provided to each traffic stream. Therefore, we propose Relay DRP protocol with QoS-based relay node selection criterion, which makes a relay path to avoid DRP resource reservation conflicts and guarantee QoS more stably through cross-layer link adaptation of cooperative relay transmission scheme and is compliant with the current WiMedia D-MAC protocol. Simulation results demonstrate performance improvements of the proposed method for throughput and QoS provisioning.