• 제목/요약/키워드: Cross-flow Fan

검색결과 105건 처리시간 0.027초

난류 발생기의 형상에 따른 수직 PCB채널에서의 열전달 및 압력손실 변화 (Heat transfer and pressure drop with the turbulence promoter in a vertical PCB Channel)

  • 박찬우;장승일;정종수;남평우
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2277-2288
    • /
    • 1996
  • This study was performed to analyze the cooling effect of heated ribs which are frequently used for cooling of electronic parts, using the numerical method. To prevent the excessive pressure drop due to turbulence promoters for the enhancement of heat transfer rate especially, the effect of the angle of turbulence promoter was investigated by the numerical analysis. Heat transfer rate with turbulence promoters with rectangular cross-section increased by 13% in average, but the coefficient of pressure drop increased by 1.68 times than that without them. In the present study, triangular cross-sectional shape turbulence promoters were suggested and numerically tested. Pressure drop of turbulence promoter with the 30 degree triangular cross-sectional shape decreased by 30% from that of rectangular cross-section promoters while heat transfer rate was almost the same. While with 4 turbulence promoters, the heat transfer rate increased by 21%, the pressure drop increased 4 times. It means that the higher capacity of cooling fan should be needed. With the triangular cross-sectional shape, the size of vortex region at the rear of promoters became considerably smaller, so pressure drop became smaller. The effect of the change of cross-sectional shape was not found in the flow pattern near the ribs, so that heat transfer characteristics in the ribs were not changed.

볼루트의 형상 변화가 원심펌프 성능에 미치는 영향에 대한 수치해석 (NUMERICAL STUDY OF A CENTRIFUGAL PUMP PERFORMANCE WITH VARIOUS VOLUTE SHAPE)

  • 이정현;허남건;윤인식
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.35-40
    • /
    • 2015
  • Centrifugal pumps consume considerable amounts of energy in various industrial applications. Therefore, improving the efficiency of pumps machine is a crucial challenge in industrial world. This paper presents numerical investigation of flow characteristics in volutes of centrifugal pumps in order to compare the energy consumption. A wide range of volumetric flow rate has been investigated for each case. The standard k-${\varepsilon}$ is adopted as the turbulence model. The impeller rotation is simulated employing the Multi Reference Frames(MRF) method. First, two different conventional design methods, i.e., the constant angular momentum(CAM) and the constant mean velocity (CMV) are studied and compared to a baseline volute model. The CAM volute profile is a logarithmic spiral. The CMV volute profile shape is an Archimedes spiral curve. The modified volute models show lower head value than baseline volute model, but in case of efficiency graph, CAM curve has higher values than others. Finally for this part, CAM curve is selected to be used in the simulation of different cross-section shape. Two different types of cross-section are generated. One is a simple rectangular shape, and the other one is fan shape. In terms of different cross-section shape, simple rectangular geometry generated higher head and efficiency. Overall, simulation results showed that the volute designed using constant angular momentum(CAM) method has higher characteristic performances than one by CMV volute.

철도터널 화재시 연결통로 및 대피로 제연을 위한 수치해석 연구 (Numerical Simulation of Smoke Ventilation in Rescue Route and Cross Passage of Railroad Tunnel)

  • 양성진;허남건;유홍선;김동현;장용준
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2008
  • A transient 3-D numerical simulation was performed to analyze the fire safety in a railway tunnel equipped with a mechanical ventilation system. The behavior of pollutants was studied for the emergency operation mode of ventilation system in case of fire in the center of the rescue station and near the escape route. Various schemes of escape route construction for connection angle($45^{\circ}$, $90^{\circ}$, 135^{\circ}$) and slope($10^{\circ}$) were evaluated for the ventilation efficiency in the fire near the escape route. From the results, it was shown that the mode of the ventilation fan operation which pressurizes the tunnel not under the fire and ventilates the smoke from the tunnel under the fire is most effective for the smoke control in the tunnel in case of the fire occurrence. It was also shown that the blowing of jet fan from the rescue tunnel to the main tunnel should be in the same direction as the flow direction in the main tunnel arising from the traffic and the buoyancy.

폐열회수 환기장치의 열교환 효율 개선을 위한 전산수치해석 (Numerical Analysis of Wasted Heat Recovery Ventilator for Improving the Heat Exchange Efficiency)

  • 김현일;김재성;박철우;박경서
    • 한국CDE학회논문집
    • /
    • 제17권1호
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, we performed numerical analysis to improve the heat exchange efficiency of wasted heat recovery ventilator which has a delivery and a exhaustion fan. One of the most important design factors that affect the efficiency of heat exchange is uniform counter-flow between inbound and outbound air flows. We had simulated several types of porous plates which were installed at air intake area. With plate having 45 degrees of installation angle and 15 mm diameter holes which are uniformly arranged, we can generate a uniform air flows at the area of porous media where inbound and outbound air flows are cross over. In addition, we installed a duct to reduce vortex flows at the outlet and to discharge exhaust airs rapidly. By using the proposed numerical assessment, we expect the improvement of the heat exchange efficiency of ventilator.

룸에어컨 소음저감을 위한 Stabilizer에 관한 연구 (A Study of Stabilizer for the Noise Reduction in Room Air Conditioner)

  • 서상호;이내영;이진하;진심원;임금식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.136-141
    • /
    • 1995
  • Room Air Conditioner(이하 RAC) 실내기는 열교환기, Cross Flow Fan(이하 CFF), 곡률, Stabilizer(이하 STB) 등 여러 설계인자가 소음, 풍량 및 압력 등에 상호 복합적으로 연성(Coupled)되어 있어 각 인자가 성능에 미치는 영향을 정량적으로 밝혀 내기가 쉽지 않다. 따라서 RAC 실내기의 고성능 및 저소음화를 실현하기 위해서는 실내기를 구성하는 각 인자간의 상호 관련성 및 각 인자가 소음.성능 등에 미치는 영향을 체계적으로 분석하는 것이 필수적이다. 본 연구에서는 설계인자중 소음 및 풍량에 민감한 영향을 주는 STB 위치 및 형상 등에 관하여 자세히 다루고자 한다. STB위치의 적절한 범위를 설정하기 위해 Laser Doppler Velicitimeter(이하 LDV)를 이용하여 곡률별 실내기 내부의 유속분포 및 속도 벡터를 측정하였고, CFF내부 Vortex의 정확한 위치를 찾아냈다. 또한 실내기 저소음화를 위한 소음원 규명 측면에서 실내기 내부의 난류도와 관련하여 속도 Fluctuation을 정의하고, 실험을 통해 구하였다.

  • PDF

AIR-MULTIPLIER 단면 형상에 따른 유동양상에 대한 수치적 해석 (Numerical analysis of air flow in the various shapes of air multiplier cross section)

  • 최정식;김형묵;김유민;구본찬
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.610-613
    • /
    • 2014
  • 본 연구에서는 Dyson사의 Air multiplier의 Coanda surface각도에 따른 Air foil 주변의 2차원 유동을 분석하고 Surface각도가 유동에 미치는 영향에 대해 해석하였다. Air multiplier 단면의 작은 Slit을 통해 분류된 공기는 Venturi effect에 의해 가속되며 Coanda effect에 의해 단면을 따라 흐르며 압력차를 발생시켜 주변의 공기를 추가적으로 유입시킨다. EDISON CFD를 이용하여 Surface 각도에 따른 Air foil 주변의 유동을 구현하고 각도가 유동에 미치는 영향을 해석하였다. 또한 다른 논문에서 발췌한 실험값과 CFD 분석을 통해 얻은 값을 비교하여 CFD분석이 유효한지 확인하였다.

  • PDF

팬의 운전조건에 따른 종류식환기터널 내의 연기거동에 관한 전산유체역학연구 (Flow and smoke behavior of a longitudinal ventilation tunnel with various velocities using computational fluid dynamics)

  • 이주희;권영진;김동은
    • 한국터널지하공간학회 논문집
    • /
    • 제16권1호
    • /
    • pp.105-115
    • /
    • 2014
  • 터널내의 연기거동 및 대피안전성을 평가하기 위하여 수치해석을 수행하였다. 본 연구의 목적은 최근 더욱 길어지고 있는 장대터널의 화재로 인한 연기 및 온도 분포와 안전성을 평가할 수 있는 수치적 방법을 구현하는데 있다. 계산에 사용되는 컴퓨터자원을 최소화하기 위하여 모델로 선정한 터널의 전체길이인 3 km을 사용하는 대신 여러 개의 대피터널이 포함되는 1.5 km만을 해석영역으로 사용하였다. 터널내의 연기거동에 의한 대피자의 안전성을 평가하기 위하여 연기의 밀도에 의한 기시도와 바닥으로부터의 높이를 고려한 SE (smoke environment)값을 사용하였다. 공기 중에 포함된 연기의 밀도는 3차원 전산유체역학을 통하여 구하였다. 이러한 연기 거동에 영향을 미치는 온도분포를 정확하게 모사하기 위하여 터널 벽면을 단열 혹은 일정한 열유속(heat flux) 가정을 사용하는 대신 1차원 열전도(heat conduction)방정식을 이용하여 터널벽면의 온도를 계산하였다. 대피터널간의 거리가 가까울수록 대피자의 안전성은 높아지겠지만 상대적으로 건설비용이 증가하게 된다. 본 연구에서 대피터널의 길이는 250 m로 하였으며 화재 시 제연팬의 운전 조건을 3가지 (팬이 가동되지 않는 조건, 임계풍속이하조건, 임계풍속이상조건)로 나누어 연기의 거동과 온도분포를 고찰하였다. 그리고 화재가 발생한 시간부터 플래쉬오버가 발생한 시간까지의 연기의 거동과 대피자의 상황을 SE를 이용하여 고찰하였다.

Optimal aerodynamic design of hypersonic inlets by using streamline-tracing techniques

  • Xiong, Bing;Ferlauto, Michele;Fan, Xiaoqiang
    • Advances in aircraft and spacecraft science
    • /
    • 제7권5호
    • /
    • pp.441-458
    • /
    • 2020
  • Rectangular-to-Ellipse Shape Transition (REST) inlets are a class of inward turning inlets designed for hypersonic flight. The aerodynamic design of REST inlets involves very complex flows and shock-wave patterns. These inlets are used in highly integrated propulsive systems. Often the design of these inlets may require many geometrical constraints at different cross-section. In present work a design approach for hypersonic inward-turning inlets, adapted for REST inlets, is coupled with a multi-objective optimization procedure. The automated procedure iterates on the parametric representation and on the numerical solution of a base flow from which the REST inlet is generated by using streamline tracing and shape transition algorithms. The typical design problem of optimizing the total pressure recovery and mass flow capture of the inlet is solved by the proposed procedure. The accuracy of the optimal solutions found is discussed and the performances of the designed REST inlets are investigated by means of fully 3-D Euler and 3-D RANS analyses.

회전하는 실린더에 의한 공력소음의 계산 (Computation of Noise from a Rotating Cylinder)

  • 장성욱;이승배;김진화;한재오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

에어컨 실내기의 공력소음 예측을 위한 RANS 난류모델의 성능 평가 (PERFORMANCE ASSESSMENT OF THE RANS TURBULENCE MODELS IN PREDICTION OF AERODYNAMIC NOISE FOR AIR-CONDITIONER INDOOR UNIT)

  • 민윤홍;강성원;허남건;이창훈;박정택
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.81-86
    • /
    • 2012
  • The objective of the present study is to investigate the effects of various turbulence models on the aerodynamic noise of an air-conditioner (AC) indoor unit. The results from URANS (unsteady Reynolds-averaged Navier-Stokes) simulations with the standard k-$\varepsilon$, k-$\omega$ shear stress transport (SST) and Spalart-Allmaras (S-A) turbulence models were analyzed and compared with the noise data from the experiments. The frequency spectra of the far-field acoustic pressure were computed using the Farrasat equation derived from the Ffowcs Williams-Hawkings (FW-H) equation based on the acoustic analogy model. Two fixed fan casings and the rotating cross-flow fan were used as the source surfaces of the dipole noise in the Farrasat equation. The result with the standard k-$\epsilon$ model showed a much better agreement with the experimental data compared to the k-w SST and S-A models. The differences in the pressure spectra from the different turbulence models were discussed based on the instantaneous vorticity fields. It was found that the over-estimated power spectra with the k-w SST and S-A models are related to the emphasized small-scale vortices produced with these models.