Browse > Article
http://dx.doi.org/10.12989/aas.2020.7.5.441

Optimal aerodynamic design of hypersonic inlets by using streamline-tracing techniques  

Xiong, Bing (College of Aerospace Science and Engineering, National University of Defense Technology)
Ferlauto, Michele (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Fan, Xiaoqiang (College of Aerospace Science and Engineering, National University of Defense Technology)
Publication Information
Advances in aircraft and spacecraft science / v.7, no.5, 2020 , pp. 441-458 More about this Journal
Abstract
Rectangular-to-Ellipse Shape Transition (REST) inlets are a class of inward turning inlets designed for hypersonic flight. The aerodynamic design of REST inlets involves very complex flows and shock-wave patterns. These inlets are used in highly integrated propulsive systems. Often the design of these inlets may require many geometrical constraints at different cross-section. In present work a design approach for hypersonic inward-turning inlets, adapted for REST inlets, is coupled with a multi-objective optimization procedure. The automated procedure iterates on the parametric representation and on the numerical solution of a base flow from which the REST inlet is generated by using streamline tracing and shape transition algorithms. The typical design problem of optimizing the total pressure recovery and mass flow capture of the inlet is solved by the proposed procedure. The accuracy of the optimal solutions found is discussed and the performances of the designed REST inlets are investigated by means of fully 3-D Euler and 3-D RANS analyses.
Keywords
inward turning inlet; shape transition; aerodynamic optimization;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Poinsot, T. and Lele, S. (1992), "Boundary conditions for direct simulations of compressible viscous reacting flows", J. Comput. Phys., 101, 104-129. https://doi.org/10.1016/0021-9991(92)90046-2   DOI
2 Ramasubramanian, V., Starkey, R. and Lewis, M. (2008), "An Euler numerical study of Busemann and quasi-Busemann hypersonic inlets at on- and off-design speeds", AIAA Paper 2008-66, 46th AIAA Aerosp. Sci. Meeting & Exhibit, Reno, NV. https://doi.org/10.2514/6.2008-66
3 Smart, M. (1999), "Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition", J. Propul. Pow., 15(3), 408-416. https://doi.org/10.2514/2.5459   DOI
4 Smart, M.K. (2001), "Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition", J. Propul. Pow., 17(2), 276-283. https://doi.org/10.2514/2.5774   DOI
5 Wang, C., Tian, X. and Yan, L. (2015), "Preliminary integrated design of hypersonic vehicle configurations including inward-turning inlets", J. Aerospace Eng., 28, 04014143. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000480   DOI
6 Wang, J., Cai, J., Duan, T. and Tian, Y. (2017), "Design of shape morphing hypersonic inwardturning inlet using multistage optimization", Aerospace Sci. Technol., 66, 44-58. https://doi.org/10.1016/j.ast.2017.02.018   DOI
7 Xiong, B., Fan, X. and Wang, Y. (2019a), "Parameterization and optimization design of a hypersonic inward turning inlet", Acta Astronaut., 164, 130-141. https://doi.org/10.1016/j.actaastro.2019.07.004   DOI
8 Xiong, B., Ferlauto, M. and Fan, X. (2019b), "Parametric generation and computational analysis of a REST inlet", 5th ECCOMAS Young Investig. Conf. (YIC2019), Krakow, Poland.
9 You, Y. (2011), "An overview of the advantages and concerns of hypersonic inward turning inlets", AIAA Paper 2011-2269 17th AIAA Int. Space Planes and Hypersonic Syst. and Techol. Conf., San Francisco, USA. https://doi.org/10.2514/6.2011-2269
10 Anderson, J. (1982), Modern Compressible Flow with Historical Perspective, McGraw-Hill,New York, USA.
11 Barger, R.L. (1981), "A procedure for designing forebodies with constraints on cross-section shape and axial area distribution", Scientific and Technical Information Branch, Hampton, USA.
12 Billig, F., Baurle, R. and Tam, C. (1999), "Design and analysis of streamline traced hypersonic inlets",9th Int. Space Planes and Hypersonic Syst. & Technol. Conf., Norfolk, VA. https://doi.org/10.2514/6.1999-4974
13 Busemann, A. (1942), "Die Achsenssymmetrische Kegelizeuber-Schallstromung", Luftfahrtforschung, 19, 137-144.
14 Cui, K., Hu, S., Li, G., Qu, Z. and Situ, M. (2013), "Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets", Sci. China Technol. Sc., 56, 1980-1988. https://doi.org/10.1007/s11431-013-5288-0   DOI
15 Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comp., 6(2), 182-197. https://doi.org/10.1109/4235.996017   DOI
16 Ferlauto, M. (2013), "Inverse design of internally cooled turbine blades based on the heat adjoint equation.", Inverse Probl. Sci. En., 21(2), 269-282. https://doi.org/10.1080/17415977.2012.693079   DOI
17 Degregori, E. and Ferlauto, M. (2018), "Optimal aerodynamic design of scramjet facility nozzles", AIP Conf. Proc., 1978(1), 470114. https://doi.org/10.1063/1.5048596
18 Ding, F., Liu, J., Huang, W., Peng, C. and Chen, S. (2019), "An airframe/inlet integrated fullwaverider vehicle design using as upgraded aerodynamic method", Aeronaut. J., 123(1266), 1135-1169. https://doi.org/10.1017/aer.2019.49   DOI
19 Drayna, T.W., Nompelis, I. and Candler, G. (2006), "Hypersonic inward turning inlets: design and optimization", AIAA Paper 2006-297, 44th AIAA Aerosp. Sci. Meeting & Exhibit, Reno, NV. https://doi.org/10.2514/6.2006-297
20 Ferlauto, M. (2015), "A pseudo-compressibility method for solving inverse problems based on the 3D incompressible Euler equations.", Inverse Probl. Sci. En., 23(5), 798-817. https://doi.org/10.1080/17415977.2014.939653   DOI
21 Ferlauto, M. and Marsilio, R. (2014), "A computational approach to the simulation of controlled flows by synthetic jets actuators.", Adv. Aircraft Spacecraft Sci, 2(1), 77-94. https://doi.org/10.12989/aas.2015.2.1.077   DOI
22 Ferlauto, M. and Marsilio, R. (2016), "A numerical method for the study of fluidic thrust vectoring", Adv. Aircraft Spacecraft Sci, 3(4), 367-378. https://doi.org/10.12989/aas.2016.3.4.367   DOI
23 Ferlauto, M. and Marsilio, R. (2018), "Numerical simulation of the unsteady flowfield in complete propulsion systems", Adv. Aircraft Spacecraft Sci, 5(3), 349-362. https://dx.doi.org/10.12989/aas.2018.5.3.349   DOI
24 Gollan, R. and Smart, M. (2013), "Design of modular shape-transition inlets for a conical hypersonic vehicle", J. Propul. Pow., 29(4), 832-838. https://doi.org/10.2514/1.B34672   DOI
25 Kuranov, A. and Korabelnikov, A. (2008), "Atmospheric cruise flight challenges for hypersonic vehicles under the AJAX concept", J. Propul. Pow., 24(6), 1229-1247. https://doi.org/10.2514/1.24684   DOI
26 Hornung, H. (2000), "Oblique shock reflection from an axis of symmetry", J. Fluid Mech., 409, 1-12. https://doi.org/10.1017/S0022112099007831   DOI
27 Iollo, A., Ferlauto, M. and Zannetti, L. (2001), "An aerodynamic optimization method based on the inverse problem adjoint equations", J. Comput. Phys., 173, 87-115. https://doi.org/10.1006/jcph.2001.6845   DOI
28 Kothari, A., Tarpley, C. and McLaughlin, T. (1996), "Hypersonic vehicle design using inward turning flow fields", AIAA Paper 1996-2552, 32nd Joint Propul. Conf., Buena Vista, FL. https://doi.org/10.2514/6.1996-2552
29 Liu, J., Ding, F., Huang, W. and Jin, L. (2014), "Novel approach for designing a hypersonic glidingcruising dual waverider vehicle", Acta Astronaut., 102, 81-88. https://doi.org/10.1016/j.actaastro.2014.04.024   DOI
30 Molder, S. and Szpiro, E. (1966), "Busemann inlet for hypersonic speeds", J.Spacecraft Rockets, 3(8), 1303-1304. https://doi.org/10.2514/3.28649   DOI