• Title/Summary/Keyword: Cross-Flow

Search Result 2,040, Processing Time 0.027 seconds

Micro-PIV Measurement on the droplet formation in a microfluidic channel (미세유체소자 내부에서의 Droplet 형성에 대한 Micro-PIV 측정)

  • Yoon, Sang-Youl;Ko, Choon-Sik;Kim, Jae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1534-1539
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid(PVA 3%) and organic phase fluid(oil) and vector fields measured by a Dynamic Micro-PIV method in the inside of a droplet while generated. Droplet length controlled by changing flow rate conditions in microchannel. Water-in-oil(W/O) droplets successfully generated at a Y junction and cross microchannel. But oil-in-water(O/W) droplets could not be formed at a Y junction microchannel. That is, PVA 3% flow could not be detached from the PDMS surface and ran parallel with oil flow. When PVA 3% flow rate was constant, droplet length and time period decreased as oil flow rate increased, but droplet frequency increased. When PVA 3% and oil flow rate ratio was constant, droplet length and time period decreased as flow rate increased, but droplet frequency increased. All that case, Standard deviation of droplet formation have less than 5% at averaged droplet length and regular-sized droplets were reproducibly formed.

  • PDF

Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers (에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구)

  • An C. S.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

Development of Calibration Jet System for Calibrating a Flow Sensor (유동센서 보정용 캘리브레이션 제트 시스템 개발)

  • Chang, J.W.;Byun, Y.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A calibration jet system using separate blower is developed to calibrate a flow sensor effectively. Designed open circuit type mini calibration jet system, which has the dimension of $0.5m(W){\times}1.17m(H)$ is small compared with conventional calibration jet systems. The exit of nozzle has exchangeable contractions with a cross section area of $38.5cm^2$ , and a cross section area of $113.1cm^2$, respectively. The ranges of wind speed at exit of exchangeable nozzles are $7.5{\sim}42\;m/s$ and $1.8{\sim}16.5\;m/s$, respectively. The input power for the high pressure blower is 1.18kW. The turning vanes for corner was rolled flat plate parallel to the flow direction. The flow conditioning screen was located immediately downstream of the wide-angle diffuser. The honeycomb and two flow conditioning screens were located in the stagnation chamber. From the economical point of view and the simplicity of the calibration jet system set up and handling, it can be said that the developed calibration jet system is an effective calibration jet system. This system can also be used to calibrate the flow sensor with high resolution.

  • PDF

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet (450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 1984
  • Turbulent jet flow has been studied in many ways; a plane jet, a rectangular jet, an annular jet, a round jet, a wall jet, a parallel jet, a valve jet, a cross jet, a slit jet and etc. In this report, a 45.deg. cross jet flow was tried by using two same dimensioned nozzels(dia..phi.20)which were set up at the exit of the subsonic wind tunnel. Each jet flows to the direction of 22.5.deg. to the axis of downstream of the mixed flow. The centerline of each jet meets at the distance of 217.3mm and their mixing flow could be imagined to develop beyond that distance, so the measurement was effectuated at X/X$_{0}$=1.2-1.5. The section of the mixed flow a elliptic circle which is formed by the 22.5.deg. inclined flows to the X direction. This experimental study aimed at the investigation of the turbulent mixing process of two jets; the mean velocities, the turbulent shear stresses, the correlation coefficients, and the momentum were respectively measured. The mean velocity distribution profiles of the down-stream component measured in the Y direction coincide well with the empirical equation of Gortler and those measured in the Z direction agree with the equation of H. Schlichting. Other mean velocities V over bar and W over bar components were randomly distributed. The higher values with same order of the intensity of turbulence were largely distributed at the central part of the flow. The momentum was decreased up to 70% by the shock losses and the development of intense turbulences, but it kept its value constantly beyond X/d=14. Two-channel hot-wire anemometer systems (model 1050 series), X-type hot-wire made of tungsten (dia. .phi.e.mu.m, long 3mm, model 0252 T5), a computer(model HP 9845B0, and a plotter (model HP 9872C) were used for the experiments and the analyses.s.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Cross Draft Directions and Velocities Using Smoke Visualization Technique (기류 가시화기법을 이용한 방해기류 방향과 속도에 따른 푸쉬풀 후드 효율 평가)

  • Song, Se-Wook;Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank in recent years. Efficiency of push pull hood system is affected by various parameters, such as cross draft, vessel shapes, size of tanks surface, liquid temperature, and so on. Among these, velocity of cross draft might be one of the most influencing factor for determining the ventilation efficiency. To take account of the effect of cross draft velocities over 0.38m/s, a flow adjustment of ${\pm}$20% should be considered into the push and +20% into the pull flow system Although there are many studies about the efficiency evaluation of push pull hood system based on CFDs(Computational Fluid Dynamics) and experiments, there have been no reports regarding the influence of velocities and direction of cross-draft on push-pull hood efficiency. This study was conducted to investigate the influence of cross draft direction and velocities on the capture efficiency of the push-pull ventilation system. Smoke visualization method was used along with mock-up of push-pull hood systems to verify the ventilation efficiency by experiments. When the cross-draft blew from the same origins of the push flows, the efficiency of the system was in it's high value, but it was decreased significantly when the cross-draft came from the opposite side of push flows Moreover, the efficiency of the system dramatically decreased when the cross-draft of open surface tank was faster than 0.4m/s.

Investigation of Local Convective Heat Transfer around a Circular Tube in Cross Flow of Air (원관 주위로 공기의 국소 대류 열전달에 대한 연구)

  • 이억수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.546-555
    • /
    • 2004
  • With circular tube heated directly or indirectly placed in a cross flow, heat flows circumferentially by conduction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube. The circumferential heat flow affects the wall temperature distribution to such an extent that in some cases. The effects of circumferential wall heat conduction on local convective heat transfer is investigated. The wall heat conduction parameter which can be deduced from the governing energy equation should be used to express the effect of circumferential heat conduction. Two-dimensional temperature distribution is presented through the numerical analysis. The comparison of one-dimensional and two-dimensional solutions is demonstrated on graph of local Nusselt numbers.

A Study on fluvial Phenomena in the Bended Alluvial Rivers (만곡유로에서의 하상변동에 관한 연구)

  • 고재웅
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1975
  • The fluvial phenomena in the bended natural river course are studied experimentally. Some theoretical and empirical conclusions were derived in prior to this study by some authors but the limitation of applicability of those results are not clearly known because of the sensitibitys of the flow regime in the reach. The main objective of this study is directed to evaluate the mechanism of sedimentation and the cross sectional changes in the equilibrium status. the most governing factor influenced to the cross sectional changes in the bended reach is the occurance of spiral flow. In this study, the streamlines and velocity distributions are checked at given interval by the hydraulic model to find out the place where spiral flow are existing under the various flow magnitudes.

  • PDF

Establishment of GIS River Section for Water Flow Management (하천유량관리를 위한 GIS 하도단면 구축)

  • 최철관;김상호;배덕효;한건연
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.131-140
    • /
    • 2000
  • The systematic data management system in the area of river flow analysis has not yet constructed, even though the need is evident due to the complicated process of tremendous input/output data in the modeling study and the importance of visualization of spatial flow variation. The objectives of this study are to suggest the method for constructing the NGIS-based river database based on contour, river, elevation, boundary layers and river cross sections and to provide the algorithm for interpolating equi-distance river cross section points. The selected study area is the main Han River starting from Paldang dam site to Indogyo bridge. The constructed database will be useful for the scientific water flow management system in the study area.

  • PDF