• Title/Summary/Keyword: Cross ratio

Search Result 2,700, Processing Time 0.03 seconds

Proposed Optimized Column-pile Diameter Ratio with Varying Cross-section for Bent Pile Structures (단일 현장타설말뚝의 변단면 분석을 통한 최적 기둥-말뚝 직경비 제안)

  • Kim, Jaeyoung;Jeong, Sangseom;Ahn, Sangyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1935-1946
    • /
    • 2013
  • In this study, the behavior characteristics of bent pile structures with varying cross-section was examined through the measured results of field load test. A framework for determining the bending stress is calculated based on the stresses in the circumference of the pile using 3D finite element analysis. It is found that the bending stress near the pile-column joint changes rapidly and fracture zones occurs easily at variable cross-sections in bent pile structures. Also, the optimized column-pile diameter ratio was analyzed through the relationship between the column-pile diameter ratio and lateral crack load ratio. Based on this study, the optimized column-pile diameter ratio can be obtained near the inflection point of the curve between the column-pile diameter ratio and lateral crack load ratio. Therefore, a present study by considering the optimized variable cross-section condition would be improved bent pile structures design.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord wise Asymmetric Cross-Section: I. Single-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: I. 단일-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • In this study, the theoretical dynamic characteristics of a thin-walled composite beam with a single-cell of chordwise asymmetric cross-section was studied. Mathematical modeling was done by considering the transverse shear effects, the warping restraint effects, the constant taper ratio in the longitudinal direction of the beam, and the geometrical cross-section ratio. The mass coefficients, stiffness coefficients, and Eigen frequencies of the selected section were investigated. In particular, the effects of the taper ratio and cross-section ratio of the model on the Eigen frequencies were analyzed and compared when the asymmetry of the section was considered and the warping function was not corrected.

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

  • Haghgooyan, M.S.;Aghanajafi, C.
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.294-301
    • /
    • 2014
  • This study focuses on analysis and comparison of entropy generation in various cross-sectional ducts along with fully developed laminar flow and constant uniform wall heat flux. The obtained results were compared in ducts with circular, semicircular, and rectangular with semicircular ends, equilateral triangular, and square and symmetrical hexagonal cross-sectional areas. These results were separately studied for aspect ratio of different rectangular shapes. Characteristics of fluid were considered at average temperature between outlet and inlet ducts. Results showed that factors such as Reynolds number, cross section, hydraulic diameter, heat flux and aspect ratio were effective on entropy generation, and these effects are more evident than heat flux and occur more in high heat fluxes. Considering the performed comparisons, it seems that semicircular and circular cross section generates less entropy than other cross sections.

Free vibrations of a two-cable network inter-supported by cross-links extended to ground

  • Zhou, H.J.;Wu, Y.H.;Li, L.X.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.653-667
    • /
    • 2019
  • Using cross-ties to connect cables together when forming a cable network is regarded as an efficient method of mitigating cable vibrations. Cross-ties have been extended and fixed on bridge decks or towers in some engineering applications. However, the dynamics of this kind of system need to be further studied, and the effects of extending cross-links to bridge decks/towers on the modal response of the system should be assessed in detail. In this paper, a system of two cables connected by an inter-supported cross-link with another lower cross-link extended to the ground is proposed and analyzed. The characteristic equation of the system is derived, and some limiting solutions in closed form of the system are derived. Roots of cable system with special configurations are also discussed, attention being given to the case when the two cables are identical. A predictable mode behavior was found when the stiffness of inter-connection cross-link and the cross-link extended to the ground were the same. The vector of mode energy distribution and the degree of mode localization index are proposed so as to distinguish global and local modes. The change of mode behaviors is further discussed in the case when the two cables are not identical. Effects of cross-link stiffness, cross-link location, mass-tension ratio, cable length ratio and frequency ratio on $1^{st}$ mode frequency and mode shape are addressed.

Effect of Divergence Ratio on Heat Transfer and Friction Factor in the Diverging Channel (확대 채널에서 확대율이 열전달과 마찰계수에 미치는 효과)

  • Oh, Se-Kyung;Lee, Myung-Sung;Jeong, Seong-Soo;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.64-70
    • /
    • 2013
  • The heat transfer and friction factor characteristics of turbulent flows in three stationary channels have been investigated experimentally to check out the effect of divergence ratio. These are a constant cross-sectional channel and two diverging channels with ratio of divergence(Dho/Dhi) of 1.16 and 1.49. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000 and the dimension of uniform cross-sectional test section is $100mm{\times}100mm$ at the cross section and 1,000 mm in length. The measurements of heat transfer coefficients and friction factors in the uniform channels were conducted as a reference. Because of the streamwise flow deceleration, the heat transfer and friction factor characteristics in the diverging channel were quite different from those of the constant cross-sectional channel. The effective friction factors and convective heat transfer coefficients increased with increasing the ratio of divergence of the channel.

Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow-A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • The empirical correlations for the prediction of breakup length of liquid jet in uniform cross flow are reviewed and classified in this study. The breakup length of liquid jets in cross flow was normally discussed in terms of the distances from the nozzle exit to the column breakup location in the x and y directions, called as column fracture distance and column fracture height, respectively. The empirical correlations for the prediction of column fracture distance can be classified as constant form, momentum flux ratio form, Weber number form and other parameter form, respectively. In addition, the empirical correlations for the prediction of column fracture height can be grouped as momentum flux ratio form, Weber number form and other parameter form, respectively. It can be summarized that the breakup length of liquid jet in a cross flow is a basically function of the liquid to air momentum flux ratio. However, Weber number, liquid-to-air viscosity ratio and density ratio, Reynolds number or Ohnesorge number were incorporated in the empirical correlations depending on the investigators. It is clear that there exist the remarkable discrepancies of predicted values by the existing correlations even though many correlations have the same functional form. The possible reasons for discrepancies can be summarized as the different experimental conditions including jet operating condition and nozzle geometry, measurement and image processing techniques introduced in the experiment, difficulties in defining the breakup location etc. The evaluation of the existing empirical correlations for the prediction of breakup length of liquid jet in a uniform cross flow is required.

Chip Forming Characteristics of Bi-S Free Machining Steel (Bi-S 쾌삭강의 칩생성특성)

  • 이영문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • In this study, the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison, those of the cold drawn Pb-S free machining steel, the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation, the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation, 'chip cross-section area ratio' is introduced. The chip cross-section area. The variational patterns of cross-section area is divided by undeformed chip cross-section area. The variational patterns of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress, however, seems to be dependent on the carbon content of the materials. The cold drawn BiS and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of non-metallic inclusions such as MnS, Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

Mean Value of Median Nerve Cross-sectional Area in Healthy 20s and 30s in Busan Area

  • Kang, Kyoung-Hwa;Lee, Gil-Hyun;Choi, Go-Eun;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.186-191
    • /
    • 2020
  • This study was designed to investigate the median nerve cross-sectional area of the upper extremity which is the main cause of CTS in the 20s and 30s. The median nerve cross-sectional area (MNC-area) of each part of the upper limb was measured in healthy 20s and 30s females and males without neurological diseases or other diseases. This MNC-area was compared with the hand, wrist, finger, and other body indexes. The research group was divided into 20s female and male groups, and the 30s were also divided into female and male groups. In the comparison between the ages, the hand, and wrist configurations in the 30s were significantly higher than those of the 20s. The mean median nerve cross-sectional area was significantly larger in the male group than in the female group in both 20s and 30s, and it was larger in both men and women than in the 20s. Hand and wrist configurations were also positively correlated with the median nerve cross-sectional area in both 20s and 30s. The median values of hand ratio and wrist ratio were 2.26 and 0.65, respectively. This median value of hand ratio was inversely correlated with the median nerve cross-sectional area. The median nerve cross-area of the 20s was 6.88~7.38 ㎟ in the male group and 5.69~6.99 ㎟ in the female group, respectively. The median nerve cross-area of the 30s was 6.32~8.89 ㎟ in the male group and 6.15~7.17 ㎟ in the female group, respectively. The mean median nerve cross-sectional area was positively correlated with body mass index in both groups. Most of the variables were higher in their 30s than in their 20s.

CROSS- VALIDATION OF LANDSLIDE SUSCEPTIBILITY MAPPING IN KOREA

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.291-293
    • /
    • 2004
  • The aim of this study was to cross-validate a spatial probabilistic model of landslide likelihood ratios at Boun, Janghung and Yongin, in Korea, using a Geographic Information System (GIS). Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and field surveys. Maps of the topography, soil type, forest cover, lineaments and land cover were constructed from the spatial data sets. The 14 factors that influence landslide occurrence were extracted from the database and the likelihood ratio of each factor was computed. 'Landslide susceptibility maps were drawn for these three areas using likelihood ratios derived not only from the data for that area but also using the likelihood ratios calculated from each of the other two areas (nine maps in all) as a cross-check of the validity of the method For validation and cross-validation, the results of the analyses were compared, in each study area, with actual landslide locations. The validation and cross-validation of the results showed satisfactory agreement between the susceptibility map and the existing landslide locations.

  • PDF

Static Aanlysis of Curved box Girder Bridge with Variable Cross Section by Transfer Matrix Method (전달행렬법에 의한 변단면 곡선 상자형 거더교의 정적해석)

  • Kim, Yong-Hee;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.109-120
    • /
    • 2003
  • The state-of-art of curved box girder bridge with cross section design has advanced in various area. In these days, several analytical techniques for behaviors of curved box girder bridges cross section are available to engineers. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method. Therefore, this paper proposed the static analysis method of curved box bridge with cross section by transfer matrix method based on pure-torsional theory and the optimal span ratio/variable cross section ratio of 3 span continuous curved box girder bridge.