• Title/Summary/Keyword: Cross flow model

Search Result 534, Processing Time 0.022 seconds

A Study on fluvial Phenomena in the Bended Alluvial Rivers (만곡유로에서의 하상변동에 관한 연구)

  • 고재웅
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1975
  • The fluvial phenomena in the bended natural river course are studied experimentally. Some theoretical and empirical conclusions were derived in prior to this study by some authors but the limitation of applicability of those results are not clearly known because of the sensitibitys of the flow regime in the reach. The main objective of this study is directed to evaluate the mechanism of sedimentation and the cross sectional changes in the equilibrium status. the most governing factor influenced to the cross sectional changes in the bended reach is the occurance of spiral flow. In this study, the streamlines and velocity distributions are checked at given interval by the hydraulic model to find out the place where spiral flow are existing under the various flow magnitudes.

  • PDF

A Study on Logconductivity-Head Cross Covariance in Two-Dimensional Nonstationary Porous Formations (비정체형 2차원 다공성 매질의 대수투수계수-수두 교차공분산에 관한 연구)

  • 성관제
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.215-222
    • /
    • 1996
  • An expression for the cross covariance of the logconductivity and the head in nonstationary porous formation is obtained. This cross covariance plays a key role in the inverse problem, i.e., in inferring the statistical characteristics of the conductivity field from head data. The nonstationary logconductivity is modeled as superposition of definite linear trend and stationary fluctuation and the hydraulic head in saturated aquifers is found through stochastic analysis of a steady, two-dimensional flow. The cross covariance with a Gaussian correlation function is investigated for two particular cases where the trend is either parallel or normal to the head gradient. The results show that cross covariances are stationary except along separation distances parallel to the mean flow direction for the case where the trend is parallel to head gradient. Also, unlike the stationary model, the cross covariance along distances normal to flow direction is non-zero. From these observations we conclude that when a trend in the conductivity field is suspected, this information must be incorporated in the analysis of groundwater flow and solute transjport.

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle (상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.

Numerical Investigation of Effect of Opening Pattern of Flow Control Valve on Underwater Discharge System using Linear Pump (유량제어밸브 개방형태가 선형펌프 방식 수중사출 시스템에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.255-265
    • /
    • 2019
  • In the present study, the effect of opening patterns of a flow control valve on underwater discharge systems using a linear pump was investigated numerically. For that, a improved mathematical model was developed. The improvement is to separate a middle tank from a water cylinder because the cross-section area of the inlet of the middle tank is an important parameter. To validate the improved model, calculation results were compared with a previous study. The results showed that $2^{nd}$ order or more polynomial opening patterns had an advantage over ramp opening patterns. Higher an order of polynomial resulted in wider operating limits. An escape velocity and a maximum acceleration of underwater vehicle were affected by time derivative of the cross-section area of the flow control valve. Besides, as a velocity profile of the vehicle got closer to linearity, the escape velocity got faster and the maximum acceleration got smaller. And velocities of the vehicle and piston had similar variation trend.

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

An experimental study on the flow separation characteristics of a paraglider canopy (패러글라이더 캐노피의 유동박리 특성에 대한 실험적 연구)

  • Shin, Jeonghan;Chae, Seokbong;Shin, Yisu;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.69-76
    • /
    • 2020
  • In the present study, we investigate the flow separation characteristics of a paraglider canopy model by tuft visualization. The experiment is conducted at Re = 3.3×105 in a wind tunnel large enough to contain the three-dimensional paraglider canopy model, where Re is Reynolds number based on the mean chord length and the free-stream velocity. The flow separation characteristics of the canopy model near the wing root are similar to those of a two-dimensional airfoil with a cross-section similar to the model. On the other hand, near the wingtip region, the flow separation is suppressed by the downwash induced by the wingtip vortex. As a result, as the angle of attack increases, the flow separation occurs from the wing root region of the canopy model and develops toward the wingtip.

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.

Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers (에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구)

  • An C. S.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

Three-dimensional groundwater water flow in an upland area-groundwater flow analysis by steady state three-dimensional model (홍적지대에 있어서의 지하수의 3차원적 유동-3차원 정상류모델에 의한 지하수 유동해석)

  • 배상근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.113-122
    • /
    • 1987
  • A numerical simulation technique of three-dimensional finite difference model is developed to study the groundwater flow system in Dcjima, an upland area which faces Kasumigaura Lake. For general perspectives of the groundwater flow system, a steady state three-dimentional model is simulated. For the sedimentary mud formations which are found in the representative formation, three situations of hydraulic conductivity are considered, representing an isotropic condition and situations where the horizontal permeability is equal to 10 times and 100times of the vertical one. The finite difference grid used in the simulation has 60x50x30=90,000 nodes. A converged solution with a tolerance of 0.001 meter of hydraulic head is set. Having determined the flow net by using a steady state three-dimensional model. the results for the three cases of hydraulic conductivity are compared with the results of tracer methods (Bae and Kayane 1987) With the aid of four representative vertical cross-sections, groundwater flow systems in the study area are assumed. Water balances for the three cases indicate very good agreement between total recharge and discharge in each case Analyses of groundwater flow system based on the tritium concentrations and water quality measurements (Bae and Kayane 1987) are confirmed by the numerical simulation and the results obtained by these two methods appeared to be in close agreement.

  • PDF