• Title/Summary/Keyword: Cross diffusion

Search Result 334, Processing Time 0.025 seconds

Modification of RFSP to Accommodate a True Two-Group Treatment

  • Bae, Chang-Joon;Kim, Bong-Ghi;Suk, Soo-Dong;D. Jenkins;B. Rouben
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.185-190
    • /
    • 1996
  • RFSP is a computer program to do fuel management calculations for CANDU reactors. Its main function is to calculate neutron flux and power distributions using two-energy-group, three dimensional neutron diffusion theory. However, up to now the treatment has not been true two-group but actually "one-and-half groups". In other words, the previous (1.5-group) version of RFSP lumps the fast fission term into the thermal fission term. This is based on the POWDERPUFS-V Westcott convention. Also, there is no up-scattering term or bundle power over cell flux (H1 factor) for the fast group. While POWDERPUFS-V provides only 1.5 group properties, true two-group cross sections for the design and analysis of CAUDU reactors can be obtained from WIMS-AECL. To treat the full two-group properties, the previous RFSP version was modified by adding the fast fission, up-scatter terms, and H1 factor. This two-group version of RFSP is a convenient tool to accept lattice properties from any advanced lattice code (e.g. WIMS-AECL DRAGON, HELIOS...) and to apply to advanced fuel cycles. In this study, the modification to implement the true two-group treatment was performed only in the subroutines of the *SIMULATE module of RFSP. This module is the appropriate one to modify first, since it is used for the tracking of reactor operating histories. The modified two-group RFSP was evaluated with true two-group cross sections from WIMS-AECL. Some tests were performed to verify the modified two-group RFSP and to evaluate the effects of fast fission and up-scatter for three core conditions and four cases corresponding to each condition. The comparisons show that the two-group results are quite reasonable and serve as a verification of the modifications made to RFSP. To assess the long-term impact of the full 2-group treatment, it is necessary to simulate a long period (several months) of reactor history. It will also be necessary to implement the full two-group treatment of reactivity devices and assess the reactivity-device worths.ce worths.

  • PDF

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

Thin Layer Drying Model of Sorghum

  • Kim, Hong-Sik;Kim, Oui-Woung;Kim, Hoon;Lee, Hyo-Jai;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Purpose: This study was performed to define the drying characteristics of sorghum by developing thin layer drying equations and evaluating various grain drying equations. Thin layer drying equations lay the foundation characteristics to establish the thick layer drying equations, which can be adopted to determine the design conditions for an agricultural dryer. Methods: The drying rate of sorghum was measured under three levels of drying temperature ($40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$) and relative humidity (30%, 40%, and 50%) to analyze the drying process and investigate the drying conditions. The drying experiment was performed until the weight of sorghum became constant. The experimental constants of four thin layer drying models were determined by developing a non-linear regression model along with the drying experiment results. Result: The half response time (moisture ratio = 0.5) of drying, which is an index of the drying rate, was increased as the drying temperature was high and relative humidity was low. When the drying temperature was $40^{\circ}C$ at a relative humidity (RH) of 50%, the maximum half response time of drying was 2.8 h. Contrastingly, the maximum half response time of drying was 1.2 h when the drying temperature was $60^{\circ}C$ at 30% RH. The coefficient of determination for the Lewis model, simplified diffusion model, Page model, and Thompson model was respectively 0.9976, 0.9977, 0.9340, and 0.9783. The Lewis model and the simplified diffusion model satisfied the drying conditions by showing the average coefficient of determination of the experimental constants and predicted values of the model as 0.9976 and Root Mean Square Error (RMSE) of 0.0236. Conclusion: The simplified diffusion model was the most suitable for every drying condition of drying temperature and relative humidity, and the model for the thin layer drying is expected to be useful to develop the thick layer drying model.

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

Effect of Morphology on Electron Transport in Dye-Sensitized Nanostructured $TiO_2$ Films

  • Park, Nam-Gyu;Jao van de Lagemaat;Arthur J. Frank
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.199-202
    • /
    • 2003
  • The relationship between the morphology of nanostructured TiO$_2$ films and the photo-injected electron transport has been investigated using intensity-modulated photocurrent spectroscopy (IMPS). For this purpose, three different TiO$_2$ films with 5 ${\mu}{\textrm}{m}$ thickness are prepared: The rutile TiO$_2$ film with 500 nm-sized cluster-like spherical bundles composed of the individual needles (Tl), the rutile TiO$_2$ film made up of non-oriented, homogeneously distributed rod-shaped particles having a dimension of approximately 20${\times}$80 nm (T2), and the anatase TiO$_2$ film with 20 nm-sized spherically shaped particles (T3). Cross sectional scanning electron micrographs show that all of the TiO$_2$films have a quite different particle packing density: poorly packed Tl film, loosely packed T2 film and densely packed T3 film. The electron transport is found to be significantly influenced by film morphology. The effective electron diffusion coefficient D$_{eff}$ derived from the IMPS time constant is an order of magnitude lower for T2 than for T3, but the D$_{eff}$ for the Tl sample is much lower than T2. These differences in the rate of electron transport are ascribed to differences in the extent of interparticle connectivity associated with the particle packing density.ity.

  • PDF

Development of a Passive Sampler using 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole for Measuring Indoor Formaldehyde (4-Amino-3-hydrazino-5-mercapto-1, 2, 4-triazole을 이용한 실내 포름알데히드 측정용 passive sampler 개발)

  • Kim Sun-Tae;Yim Bongbeen;Jeong Jaeho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.593-603
    • /
    • 2005
  • Passive sampler using 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole (AHMT) was developed to determine formaldehyde in indoor environment. The chromatography paper cleaned by $3\%$ hydrogen peroxide solution was experimently determined as a optimum absorbtion filter for the collection of formaldehyde. The passive sampler with a broad cross-sectional area and a short diffusion length was quite good in sensitivity. The passive sampler and the active sampling method with an impinger were strongly correlated with a correlation coefficient of 0.9848. The limits of detection and quantification of the passive sampler for the measurement of formaldehyde in the indoor environment were 7.5 and 10.2 ppb, respectively. Temperature ($19\∼28^{circ}C$) and relative humidity ($30\∼90\%$) had slight influence on the sampling rate of the passive sampler. However, the increase of flow velocity on the surface of sampler resulted in the increase of sampling rate.

Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature (폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.564-570
    • /
    • 2006
  • Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

The Prediction and Evaluation of Contamination in the Large Clean Room for Manufacturing Electronic Components (대형 클린룸내 전자부품 생산공정에서의 이물전이 예측을 위한 기류해석에 관한 연구)

  • Jeong, Gi-Ho;Shin, An-Seob;Park, Chang-Sik;Byun, Hyang-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.202-202
    • /
    • 2008
  • The world gross market of many kinds of electronics, such as TV and mobile phone has been increasing rapidly these days. It is mainly caused by the amazing developments of IT technology during past decade and the changes of individual life style for the better. Thanks to the increases of electronics manufactured in quantity, much more electronic components such as MLCC (multi layer ceramic capacitor) and PCB (printed circuit board), which are our main products, have been needed as a consequence. Though it was reported that total market of electronic components exceeds several hundreds of billion dollars, there are many manufactures struggling for survival in the competition of electronics components. Then the recognition of quality as a key technology has spread and the efforts for high-yield production lines have been kept in many companies. In this paper, our efforts to eliminate the contamination of particles and the diffusion of some volatile organic compounds which is very harmful to workers at production line have been introduced.

  • PDF

Comparison of Shear Bond Strength of Ceramic Fused to Ni-Cr and Co-Cr Alloy by Heat Treatment (도재용착용 Ni-Cr 합금과 Co-Cr 합금의 열처리에 따른 전단결합강도 비교)

  • Ahn, Jae-Seok;Ko, Eun-Kyung;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2011
  • Purpose: This study was to evaluate the shear bond strength of the ceramic fused to Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) by heat treatment. Methods: Metal specimens were divided into 5 groups for each alloy according to heat treatment conditions prior to porcelain application. Fifteen specimens from each group were subjected to a shear load a universal testing machine using a 0.1mm/min cross-head speed and one specimen from each group was observed with EDX line profile. Results: The diffusion of metal oxide observed far in the specimen heat treated than no heat treated in the opaque layer. The shear bond strength measured highest to BP3(50.50MPa), WC2(50.49MPa) groups and measured lowest from BP1(35.1MPaa), WC1(39.66MPa) groups which were not treated with heat, and there was a significant difference (p<0.05). Conclusion: The shear bond strength of Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) measured similar 5 groups all.