• Title/Summary/Keyword: Cross Linker

Search Result 92, Processing Time 0.029 seconds

Effects of Silicone Polymer Blends on Physical Properties of Dental Polyvinylsiloxane Impression Materials (실리콘폴리머의 혼합사용이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향)

  • Lim, Chang-Ha;Kim, Min-Kang;Kim, Young-Chul;Park, Nam-Cook;Song, Ho-Jun;Park, Yeong-Joon
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.76-83
    • /
    • 2009
  • The purpose of this study was to investigate the effects of combined use of several types of silicone polymers on the physical properties of the dental polyvinylsiloxane impression materials (PVS). Four types of silicone prepolymers having different molecular weight and vinyl group position, and two types of cross-linkers having differently located silyl hydride functional groups were used in various combinations for the formulation. The samples containing bimodal or trimodal prepolymers showed higher tensile strength, elongation at break, and elastic deformation than those containing only one type of prepolymer. The samples using CR210 cross-linker which has side- and terminal-silyl hydride groups showed higher elastic deformation and elongation at break than those using CR101 cross-liker which has side-only silyl hydride group. High vinyl content prepolymer having side vinyl group delayed setting even though it enhanced tensile strength. Further studies are needed to clarify the specific role of this component on setting time and to find appropriate controlling methods for making improved PVS with optimum workability.

Chitosan Nanoparticles as a New Delivery System for the Anti-HIV Drug Zidovudine

  • Dahmane, El Montassir;Rhazi, Mohammed;Taourirte, Moha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1333-1338
    • /
    • 2013
  • Chitosan-based nanoparticles (CSNP) were prepared through ionic cross-linking and gelation of chitosan (CS) by tripolyphosphate (TPP). CS properties such as molecular weight, and preparation conditions were screened and the resulting nanoparticles were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained particles were consistently spherical with an overall diameter of approximately $107{\pm}20$ nm. They were successfully used as a carrier for Zidovudine, an anti-human immunodeficiency virus (HIV) which, to our knowledge, is novel. The encapsulation ability, loading capacity, and controlled release behavior for these CSNP was evaluated. Results indicated that their intrinsic properties were strongly affected by properties inherent to CS such as molecular weight, and by the preparation condition, such as cross-linking density, which depends on the concentration of the cross-linker. In vitro release tests for the entrapped zidovudine showed that the CNNP provided a continuous release that can last upwards 20 h.

Dielectric Properties of Semi-IPN Poly(phenylene oxide) Blend/$BaTiO_3$ Composites with Type of Cross-linker (가교체 종류에 따른 Semi-IPN Poly(phenylene oxide) 블렌드와 $BaTiO_3$ 복합재료의 유전특성)

  • Jang, Yong-Kyun;Lee, Ho-Il;Seong, Won-Mo;Park, Sang-Hoon;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • The dielectric properties of semi-IPN poly(phenylene oxide)(PPO) blend/$BaTiO_3$(BT) composites are investigated. The composites are fabricated via melt-mixing of crosslinker and peroxide in precursor PPO composite obtained by precipitating the suspension consisted of PPO, BT and toluene into methylethyl ketone, poor solvent of PPO. The permittivity of the precursor PPO composites shows higher value than that of integral-blended PPO composites by extruder and coincides with the theoretical value calculated by logarithmic rule of mixture. The blend of PPO and cross-linked triallyl isocyanurate is most effective for lowering the permittivity and loss tangent owing to the suppression of the orientation polarization of matrix. In contrast, 4,4'-(1,3-phenylene diisopropylidene) bisaniline, which has amine unit in its structure, increases the permittivity as well as loss tangent of the composite, but it has the ability to densify the matrix resin and the interfacial adhesion between the matrix and filler to improves flexural strength and modulus.

Preparation of Hyaluronic Acid Microspheres with Enhanced Physical Stability by Double Cross-link or Alginate (이중 가교제 또는 알긴산에 의해 물리적인 안정성이 향상된 히알루론산 마이크로입자의 제조)

  • Kim, Dong-Hwan;Song, Chung-Kil;Balakrishnan, Prabagar;Park, Chun-Geon;Choi, Ae-Jin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • Hyaluronic acid (HA) is a natural polymer consisting of disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine. It has a great potential and success in cosmetic and biomedical applications. However, native HA is highly soluble and easily metabolized by enzymes such as hyaluronidase. Thus, various studies have been reported on modifying the physicochemical properties of HA, while maintaining its biocompatibility. For controlled drug delivery, many trials for fabricating HA microspheres were achieved under chemical reaction. The HA microspheres fabricated to improve the physical stability of HA using adipic acid dihydrazide (ADH) by cross-linking reaction has been reported earlier, however it lacks the desired physical stability and rapidly decomposes by swelling or enzymes. Therefore, we prepared double cross-linked HA microspheres (DC-HA microspheres) and alginate containing HA microspheres (AC-HA microspheres) to enhance its physicochemical properties. DC-HA microspheres were prepared using trisodium trimetaphosphate (STMP) under crosslinking reaction after ADH cross-linking reaction. AC-HA microspheres were prepared by adding alginate as a networking polymer. These microspheres were characterized by morphology, particle size, zeta potential, stability against hyaluronidase. Results showed that the DC-HA and AC-HA microspheres are more stable than that of HA microspheres.

Preparation of Pore-filled Ion-exchange Membranes using Poly(vinylbenzyl ammoninum salt) (Poly(vinylbenzyl ammonium salt)를 이용한 Pore-filled 이온교환막의 제조)

  • 변홍식
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • Pore-filled ion-exchange membranes in which polypropylene(PP) microporous membrane was used as a nascent membrane were prepared by an in-situ cross-linking technique. Poly(vinylbenzyl chloride)(PVBCI) reacted with piperazine(PIP) or 1,4-diaminobicyclo[2,2,2]octane(DABCO) in a di-methylforamide(DMF) solution was filled in the pores of the microporous base membrane. After gellation the remaining chloromethyl groups were, then reacted with an amine such as trimethylamine to form positively charged, ammonium site. This will produce the pore-filled anion-exchange membrane. It was shown that this simple 2 step procedure gave dimensionally stable, pore-filled membranes in which the MG of polymer gel and degree of cross-linking could be easily controlled by the concentration of PVBCI and cross-linker in the starting DMF solution. Specially, high water permeability (7.8 kg/$m^2$hr, host membrane: PP3, MG: 73%, degree of cross-linking: 10%, crosslinker: PIP) at ultra low pressure(100 kPa) indicates the produced pore-filled membranes is usable as a water softening membrane.

  • PDF

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

In vitro culture of skin cells on a crosslinked gelatin based scaffold for artificial skin

  • Shin, In-Soo;Kwon, Oh-Hee;Kim, Soon-Nam;Hong, Choong-Man;Lee, Ki-Hong;Oh, Ho-Jung;Yoo, Si-Hyung;Lim, Jae-Hyun;Choi, Seung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.100.2-101
    • /
    • 2003
  • To satisfy the increasing medical demanding especially for sever burn patients to regenerate full thickness wound cure, this study developed dermis with gelatin based scaffold and perform the biocompatibility tests. To prepare scaffold 30% of gelatin was mixed with sieved salt and dried in the mold to shape then, cross linked with a water-soluble cross-linker, EDAC. Preparing the cell for seeding from a rabbit skin, the fibroblast and keratinocyte were successfully isolated and cultured in vitro. After cell and scaffold were ready, the fibroblast was seeded to the scaffold (∼10$\^$6/ cell/cm ) for preparing dermis and keratinocyte was cultured until forming the sheet. (omitted)

  • PDF

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

The Performance Stability of Ophthalmic Material with UV-Block Effect Containing Hydroxyl Benzophenone Group and Tungsten Nanoparticles

  • Kim, Duck-Hyun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.3
    • /
    • pp.97-103
    • /
    • 2017
  • In this study, the functional hydrogel ophthalmic lens containing tungsten oxide nanoparticles, 2,4-dihydroxy benzophenone and 2-hydroxy-4-(methacryloyloxy) benzophenone were manufactured. HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), AA(acrylic acid), the cross-linker EGDMA (ethylene glycol dimethacrylate), the initiator AIBN (azobisisobutyronitrile) and the functional additives including tungsten oxide nanoparticles, 2,4-dihydroxy benzophenone, and 2-hydroxy-4-(methacryloyloxy) benzophenone were used respectively. The measurements of water content and refractive index of the sample was decreased and increased, respectively. And also, the UV transmittance of produced lens containing 2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy) benzophenone and tungsten oxide nanoparticles was measured. Based on the results of this study, it is judged that the performance improvement increased over time when 2-hydroxy-4-(methacryloyloxy) benzophenone was used as an additive, while the use of tungsten oxide nanoparticles influenced on blue-ray-blocking effect of the hydrophilic lens.

대장균 검출을 위한 항체고정화 Quartz Crystal Microbalance 시스템의 특성

  • Park, In-Seon;Kim, Nam-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.701-702
    • /
    • 2000
  • The thiolated anti-Escherichia coli antibody prepared by thiolation with a thiolcleavable heterobifunctional cross-linker, sulfosuccinimidyl 6[3- (2-pyridyldithio) propionamido]hexanoate (sulfo-LC-SPDP) was chemisorped onto one gold electrode of the piezoelectric quartz crystal surface. In the QCM system employing a batch-type well holder, a steady-state frequency decrease was attained within 20 min when $100{\sim}200\;{\mu}L$ suspensions of Escherichia coli having viable cell counts of $10^5{\sim}10^6\;CFU/mL$ were added. The stability of sensor response was improved compared to the system with a batch-type dip holder.

  • PDF