Browse > Article

Effects of Silicone Polymer Blends on Physical Properties of Dental Polyvinylsiloxane Impression Materials  

Lim, Chang-Ha (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University)
Kim, Min-Kang (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University)
Kim, Young-Chul (Faculty of Applied Science and The Research Institute for Catalyst, Chonnam National University)
Park, Nam-Cook (Faculty of Applied Science and The Research Institute for Catalyst, Chonnam National University)
Song, Ho-Jun (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University)
Park, Yeong-Joon (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University)
Publication Information
Elastomers and Composites / v.44, no.1, 2009 , pp. 76-83 More about this Journal
Abstract
The purpose of this study was to investigate the effects of combined use of several types of silicone polymers on the physical properties of the dental polyvinylsiloxane impression materials (PVS). Four types of silicone prepolymers having different molecular weight and vinyl group position, and two types of cross-linkers having differently located silyl hydride functional groups were used in various combinations for the formulation. The samples containing bimodal or trimodal prepolymers showed higher tensile strength, elongation at break, and elastic deformation than those containing only one type of prepolymer. The samples using CR210 cross-linker which has side- and terminal-silyl hydride groups showed higher elastic deformation and elongation at break than those using CR101 cross-liker which has side-only silyl hydride group. High vinyl content prepolymer having side vinyl group delayed setting even though it enhanced tensile strength. Further studies are needed to clarify the specific role of this component on setting time and to find appropriate controlling methods for making improved PVS with optimum workability.
Keywords
bimodal; prepolymer; cross-linker; polyvinylsiloxane; impression material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. F. McCabe and H. J. Wilson, 'Addition curing silicone rubber impression materials. An appraisal of their physical properties', Brit. Dent. J., 145, 17 (1978)   DOI   ScienceOn
2 Council on Dental Materials and Devices, 'Revised American Dental Association specification No. 19 for non-aqueous, elastomeric dental impression materials', J. Am. Dent. Assoc., 94, 733 (1977)   DOI   PUBMED
3 B. B. Boonstra, H. Cochrane, and E. M. Dannenberg, 'Reinforcement of silicone rubber by particulate silica', Rubber Chem. Tech., 48, 558 (1975)   DOI   ScienceOn
4 J. R. Williams and R. G. Craig, 'Physical properties of addition silicones as a function of composition', J. Oral. Rehabil., 15, 639 (1988)   DOI   PUBMED
5 G. B. Shah and R. W. Winter, 'Effect of bimodality on tear properties of silicone networks', Macromol. Chem. Phys., 197, 2201 (1996)   DOI   ScienceOn
6 S. K. Patel, S. Malone, C. Cohen, J. R. Gillmor, and R. H. Colby, 'Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks', Macromolecules, 25, 5241 (1992)   DOI
7 G. B. Shah, 'The effect of bimodality on the tear properties of filled silicone networks', J. Appl. Polymer Sci., 94, 1719 (2004)   DOI   ScienceOn
8 T. Aziz, W. Mark, and J. Robert, 'Development of a new poly(dimethylsiloxane) maxillofacial prosthetic material', J. Biomed. mater. Res. B. Appl. Biomater., 65B, 252 (2003)   DOI   ScienceOn
9 A. L. Andrady, M. A. Llorente, and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. VII. Networks designed to demonstrate non-Gaussian effects related to limited chain extensibility', J. Chem. Phys., 72, 2282 (1980)   DOI
10 K. Hiroshi and F. Shunichi, U.S. Patent 5637628 (1997)
11 L. C. Yanyo and F. N. Kelley, 'Effect of Chain Length Distribution on the Tearing Energy of Silicone Elastomers', Rubber Chem. Tech., 60, 78 (1987)   DOI   ScienceOn
12 J. H. Lai, L. L. Wang, C. C. Ko, R. L. De Long, and J. S. Hodges, 'New organosilicon maxillofacial prosthetic materials', Dent. Mater., 18, 281 (2002)   DOI   ScienceOn
13 A. K. Bhowmick and H. L. Stephens, 'Handbook of elastomers: new developments and technology', p. 562-586, Marcel Dekker Press, New York, 1988
14 K. J. Anusavice, 'Skinner's science of dental materials', 11th ed., p. 205-231, Saunders Press, St. Louis, 2003
15 K. Bellamy, G. Limbert, M. G. Waters, and J. Middleton, 'An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects', Biomaterials, 54, 5061 (2003)
16 J. E. Mark and A. L. Andrady, 'Model networks of end-linked polydimethylsiloxane chains. X. Bimodal networks prepared in two-stage reactions designed to give high spatial heterogeneity', Rubber Chem. Tech., 54, 366 (1981)   DOI   ScienceOn
17 W. J. Finger, 'Significance of filler content to properties of silicone impression materials', Dent Mater, 4, 33 (1988)   DOI   ScienceOn
18 A. L. Andrady, M. A. Llorente, and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. IX. Gaussian, non-Gaussian, and ultimate properties of the trifunctional networks', J. Chem. Phys., 73, 1439 (1980)   DOI
19 M. A. Llorente, A. L. Andrady, and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties', J. Polymer Sci. Polymer Phys. Ed., 19, 621 (1981)   DOI
20 T. Aziz, M. Waters, and R. Jagger, 'Analysis of the properties of silicone rubber maxillofacial prosthetic materials', J. Dent., 31, 67 (2003)   DOI   ScienceOn
21 J. Klooster, G. I. Logan, and A. H. L. Tjan, 'Effects of strain rate on the behavior of elastomeric impression', J. Prosthet. Dent., 66, 292 (1991)   DOI   ScienceOn
22 Z. M. Zhang and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. XIV. Stress-strain, thermoelastic, and birefringence measurements on the bimodal networks at very low temperatures', J. Polymer Sci. Polymer Phys. Ed., 20, 473 (1982)   DOI
23 W. Finger and M. Komatsu, 'Elastic and plastic properties of elastic dental impression materials', Dent. Mater., 1, 129 (1985)   DOI   ScienceOn
24 E. Warrick, O. Pierce, K. Polmanteer, and J. Saam, 'Silicone elastomer developments 1967-1977', Rubber Chem. Tech., 52, 437 (1979)   DOI   ScienceOn
25 ASTM Committee. Standard test methods for vulcanized rubber and thermoplastic rubbers and thermoplastic elastomers-Tension [D412-98]. New York: American National Standards Institute, 1998
26 C. John, T. Yutaka, and P. L. Eugene, 'Clinically relevant mechanical properties of elastomeric impression materials', Int. J. Prosthodont., 11, 219 (1998)   PUBMED
27 A. G. Andreopoulos, G. L. Polyzois and P. P. Demetriou, 'Shrinkage mechanism of elastomeric impression materials', J. Mater. Sci. Lett., 7, 235 (1988)   DOI   ScienceOn
28 M. J. Edwark and A. Richard, U.S. Patent 3957713 (1976)