• Title/Summary/Keyword: Cross Impact Matrix

Search Result 20, Processing Time 0.024 seconds

Identifying Core Robot Technologies by Analyzing Patent Co-classification Information

  • Jeon, Jeonghwan;Suh, Yongyoon;Koh, Jinhwan;Kim, Chulhyun;Lee, Sanghoon
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.73-96
    • /
    • 2019
  • This study suggests a new approach for identifying core robot tech-nologies based on technological cross-impact. Specifically, the approach applies data mining techniques and multi-criteria decision-making methods to the co-classification information of registered patents on the robots. First, a cross-impact matrix is constructed with the confidence values by applying association rule mining (ARM) to the co-classification information of patents. Analytic network process (ANP) is applied to the co-classification frequency matrix for deriving weights of each robot technology. Then, a technique for order performance by similarity to ideal solution (TOPSIS) is employed to the derived cross-impact matrix and weights for identifying core robot technologies from the overall cross-impact perspective. It is expected that the proposed approach could help robot technology managers to formulate strategy and policy for technology planning of robot area.

Cross Impact Analysis Using Goal Programming (Goal Programming을 이용한 상호영향도 분석)

  • 김연민;이진주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 1981
  • This paper deals with cross impact analysis for technology assessment. The focus of the paper is to develop new technique of cross impact matrix using goal programming method. In this study, the idea of cross impact analysis based on scenario generation method especially SMIC-74 (2) is expanded. Critical literature review on SMIC-74 is presented to discuss the mathematical rationale of consistent probability in cross impact analysis. A new model of cross impact analysis using goal programming to overcome the shortcomings of the scenario generation technique especially SMIC-74 is developed. This new technique is also applied to the assessment of the air pollution problems in Seoul Metropolitan area in Korea. The results of analysis give us following findings 1) Cross impact analysis using goal programming produce more meaningful solutions comparing to those of SMIC-74 2) Theoretical rationale of the objective function in the newly developed technique is more appropriate than that of SMIC-74.

  • PDF

The Technology Valuation Model for Technology of Management (기술경영을 위한 기술가치 평가모형)

  • Hong, Du-Wha;Park, Hae-Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.63-89
    • /
    • 2006
  • Recently, the technology is getting to be the most important factor for companies, as the industry is changing fast. The uncertainty and complexity of technology valuation arc higher so that the technology concentrated companies need more developed and high performance technology. This paper reviews the methods of technology valuation for five categories that have been developed by valuation researchers, (1) research of technology diffusion and acceptance model, (2) research of technology valuation, (3) research of technology import and export factor, (4) research of technology valuation model, (5) research of technology transfer and market. And we propose a new technology valuation model using need(market), seed(technology) and deeds(management) factor by cross impact matrix. This model gives us the reference negotiation range for deciding the amount of royalty. I hope this paper induces more research on this field of technology valuation.

Sensing of OFDM Signals in Cognitive Radio Systems with Time Domain Cross-Correlation

  • Xu, Weiyang
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.545-553
    • /
    • 2014
  • This paper proposes an algorithm to sense orthogonal frequency-division multiplexing (OFDM) signals in cognitive radio (CR) systems. The basic idea behind this study is when a primary user is occupying a wireless channel, the covariance matrix is non-diagonal because of the time domain cross-correlation of the cyclic prefix (CP). In light of this property, a new decision metric that measures the power of the data found on two minor diagonals in the covariance matrix related to the CP is introduced. The impact of synchronization errors on the signal detection is analyzed. Besides this, a likelihood-ratio test is proposed according to the Neyman-Pearson criterion after deriving probability distribution functions of the decision metric under hypotheses of signal presence and absence. A threshold, subject to the requirement of probability of false alarm, is derived; also the probabilities of detection and false alarm are computed accordingly. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed algorithm.

Designing an Input Parameters Setting Model for Reducing the Difficulty of Input Parameters Estimations in Cross Impact Analysis (기술상호효과분석의 입력변수 추정 난이도 경감을 위한 입력변수 설정모형의 설계)

  • Jun, Jungchul;Kwon, Cheolshin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.42 no.2
    • /
    • pp.35-48
    • /
    • 2017
  • As the technology convergence paradigm emerges, the need for "CIA techniques" to analyze the mutual effects of technology is increasing. However, since the CIA input parameter estimation is difficult, the present study suggests a "CIA input parameter setting model" to alleviate the difficulty of CIA input parameter estimation. This paper is focused on the difference of measurement difficulty by each scale which expert's estimation behavior was defined as measurement activity quantifying the judgment of future technology. Therefore, this model is designed to estimate the input variable as a sequence or isometric scale that is relatively easy to measure, and then converts it into a probability value. The input parameter setting model of the CIA technique consists of three sub-models : 'probability value derivation model', 'influence estimation model', and 'impact value calculation model', in order to develop a series of models the Thurstone V model, Regression Analysis, etc has been used.

Drop-weight impact damage evaluation for carbon fiber/epoxy composite laminates (탄소 섬유강화 복합재료의 중력 낙하 충격으로 인한 손상 평가)

  • Sohn, Min-Seok;Hu, Xiao-Xhi;Ki, Jang-Kyo;Hong, Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.89-92
    • /
    • 2001
  • Drop weight impact tests were performed to investigate the impact behavior of carbon fiber/epoxy composite laminates reinforced by short fibers and other interleaving materials. Characterization techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates. Scanning electron microscopy was used to observe impact damage and fracture modes on specimen fracture surfaces. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking and fiber breakage depending on the interlayer materials. Among the composite laminates tested in this study, the composites reinforced by Zylon fibers showed very good impact damage resistance with medium level of damage, while the composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is expected to deteriorate the bulk strength due to the reduction of fiber volume fraction, even though the damaged area is significantly reduced.

  • PDF

A comparative study of pine rosin and glutaraldehyde cross linker on mechanical properties of jute corn starch based biocomposite

  • Karishma M. Sakhare;Suraj R. Bamane;Shashikant P. Borkar
    • Advances in materials Research
    • /
    • v.13 no.4
    • /
    • pp.269-283
    • /
    • 2024
  • Biocompositesmade up of starch and jute fibres are biodegradable and environmentally friendly materials for sustainable development. In this study, corn starch has been separately modified with 15% pine rosin and 40% glutaraldehyde, and 30% glycerol is used as a plasticizer. The composites have been prepared for three different volume proportions of matrix and jute fibre such as 60:40, 70:30 and 80:20 by using a hot compression moulding machine. The effects of pine rosin and glutaraldehyde on mechanical properties have been studied. Pine rosin modified starch jute composites have shown higher tensile and flexural properties as compared with glutaraldehyde modified starch jute composite. The highest tensile strength and modulus are found at 60:40 matrix and jute fibre volume proportion of pine rosin modified starch jute composite which are 13.97 MPa and 782.94 MPa respectively. Similar trends were found in flexural strength and modulus for pine rosin modified starch jute composite having matrix to jute fibre proportion 60:40 which are 29.18 MPa and 1107.76 MPa respectively. But, in case of impact strength, glutaraldehyde modified starch jute composite having matrix to jute fibre proportion 80:20 have shown highest impact strength that is 59.05 KJ/m2. Starch-jute composite with glutaraldehyde shows 33% more water absorbency as compared to composite having pine rosin as cross linker. Highest FTIR graph indicates that the number of -OH group is much lower in case of pine rosin modified starch than glutatraldehyde modified starch which indicates that bonds formed by pine rosin are much stronger than the bonds formed by glutaraldehyde. The surface morphology of the composite was influenced by pine rosin and glutaraldehyde which is shown in the SEM image.

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

Modified Phillips-Tikhonov regularization for plasma image reconstruction with modified Laplacian matrix

  • Jang, Si-Won;Lee, Seung-Heon;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.472-472
    • /
    • 2010
  • The tomography has played a key role in tokamak plasma diagnostics for image reconstruction. The Phillips-Tikhonov (P-T) regularization method was attempted in this work to reconstruct cross-sectional phantom images of the plasma by minimizing the gradient between adjacent pixel data. Recent studies about the comparison of the several tomographic reconstruction methods showed that the P-T method produced more accurate results. We have studied existing Laplacian matrix used in Phillips-Tikhonov regularization method and developed modified Laplacian matrix (Modified L). The comparison of the reconstruction result by the modified L and existing L showed that modified L produced more accurate result. The difference was significantly pronounced when a portion of plasma was reconstructed. These results can be utilized in the Edge Plasma diagnostics; especially in divertor diagnostics on tokamak a large impact is expected. In addition, accurate reconstruction results from received data in only one direction were confirmed through phantom test by using P-T method with modified L. These results can be applied to the tangentially viewing pin-hole camera diagnostics on tokamak.

  • PDF

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.