• Title/Summary/Keyword: Cross Bar

Search Result 274, Processing Time 0.027 seconds

Evaluation of Radial Direction Non-uniform Strain in Drawn Bar (인발 봉재의 반경방향 불균일 변형률 평가)

  • Lee, S.M.;Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Moon, Y.H.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.356-361
    • /
    • 2020
  • In general, the drawing process is performed in a multi-pass to meet the required shape and cross section. In the drawn material, the surface strain is relatively higher than the center due to the direct contact with the die. Therefore, a non-uniform strain distribution appears in the surface of the material where the strain is concentrated and the center having a relatively low strain, thus it is difficult to predict the strain in the drawn material. In this study, the non-uniform strain distribution was evaluated using a finite element analysis and the non-uniform strain distribution model based on the upper bound method. In addition, the relationship between the hardness and the strain was established through a simple compression test to evaluate the distribution of the strain in the experimentally multi-pass drawn bar.

Seismic Performance Evaluation of Non-seismic T-bar type Steel-Panel Suspended Ceiling using Shaking Table Test (비내진 상세를 갖는 금속마감패널 천장시스템의 진동대 실험을 통한 내진성능평가)

  • Lee, Jae-Sub;In, Sung-Woo;Jung, Dam-I;Lee, Doo-Yong;Lee, Sang-Hyen;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.171-180
    • /
    • 2019
  • In Korea, the seismic design of non-structural elements was interested by Earthquake of the 2016 Gyeong-ju and 2017 Po-hang. Among the non-structural elements, the ceiling system with steel panel used in Po-hang station showed failure examples of non-seismic design ceiling. In this study, the seismic performance of suspended ceiling with steel-panel, such as those used in Po-hang Station, was evaluated by shaking table tests. The shaking table tests were performed in accordance with the ICC-ES AC156 standard with floor acceleration being applied horizontally in one direction using a $3.3{\times}3.3m^2$ frame. The ceiling system consists of steel-panels, carrying channels, main and cross T-bars, and anti-falling clips. The anti-falling clip prevents the steel panel falling completely. The shaking table test confirmed that the damage at the previous stage had a direct impact on the damage state at the next stage. Through the shaking table test, the damage state of the T-bar type steel-panel suspended ceiling system was defined.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

A Study on the Hull Form of Fishing Boats around 1900 in South Coast of Korea (한국 남해안의 1900년경 어선의 선형에 관한 연구)

  • 고장권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.244-248
    • /
    • 2000
  • It was investigated and analized on the construction and hull form for the ordinary fishing boat of south coast in Korea, and then analogized on the shipbuilding technology of fishing boat and fishing type around 1900 by B-spline form parameter method. The results obtained can be summarize as follows : (1) It was known that the boats used in this study have more narrow hull form than that of ancient fishing boats and their hull form was improved around 1900. (2) Keel was composed of bar keel with angle cross section. The stem corner have a material of bar stem and makes a sharp pointed stem. (3) Shell plate was jointed by the rabbetted clinker joint method. (4) It was investigated that anchovy drag net fishing boat has high L/B, L/D, B/D value as compared with drift gill net fishing boat. (5) Two boats have a good stability and particularly anchovy drag net fishing boat have a better stability value in comparison to the drift gill net fishing boat.

  • PDF

Similitude Law and Scale Factor for Blasting Demolition Test on RC Scale Models (철근콘크리트 축소모형의 발파해체실험을 위한 상사법칙 및 축소율)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • When doing a blasting demolition on RC structures made of scale models, scale model members considering both a proper scale factor and mechanical characteristics of materials have to be similar to prototype RC members to analyze the collapse behavior of RC structures. In this study. a similitude law considering the density of prototype materials is calculated. Both mix of concrete and arrangement of reinforcement have been described referring to Concrete Standard Specification as well as Design Standard of Concrete Structure. The scale factor on scaled concrete models considering maximum size of coarse aggregate is about one-fifth of a cross section of prototype concrete members. A scale factor on staled steel bar models is about one-fifth of a nominal diameter of prototype steel bar. According to the mechanical test results of scale models, it can be concluded that the modified similitude law may be similar to compressive strength of prototype concrete and yield strength of prototype steel bar.

Forced Oscillation Wind Tunnel Test of a 50m Length Airship (50M급 비행선의 강제진동 풍동시험)

  • Chang,Byeong-Hee;Lee,Yung-Gyo;Ok,Ho-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.17-22
    • /
    • 2003
  • An airship is statically unstable, because it has no wing, relatively small tails and a large hull. Hence, an accurate prediction of dynamic stability is critical. In this study, dynamic stability data of the 50m Length Airship were acquired through forced oscillation wind tunnel tests. The tests were done in Birhle Applied Research Inc's Lange Amplitude Multi-Purpose(BAR LAMP) Facility located in Germany. The tests were composed with 16 static runs and 26 dynamic runs. As results, it is obtained that dynamic characteristics of the airship depend on the sideslip angle, the angular rate and its direction as well as the angle of attack. Generally, three directional moments have damping, but the normal force, the side force, and the cross-derivatives are unstable. The dynamic derivatives are not sensitive to the control surfaces, but nonlinear to the sideslip angle.

Dynamic Characteristics of Multiple Bars in the Channels with Erodible Banks (하안침식을 고려한 복렬사주의 동적 거동 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • In this study, the development processes of multiple bars in the channels with erodible banks were investigated by double Fourier analysis. The initially straight channels in the experiment flume were widened with eroding the side banks, and the multiple bars were generated and grew due to stalling of the sediment on the bed. The bars migrated downstream and the size of the bars increased with time. The flow was separated around the bars, and the bed and banks near the bars were scoured due to the impinged secondary flow. The morphologic changes were accelerated by the bank erosion, which affected the fluctuations of sediment discharge downstream. The double Fourier analysis of the bed waves showed that 1-1 mode (alternate bar) was dominant at the initial stage of the channel development. As time increased, 2-3 mode (central or multiple bars) was dominant due to the increased width to depth ratio. Moreover, the number of bars in a cross section of the channel were increased due to the non linearity of alternate bars. The width to depth ratio was increased by the bank erosion, which affected the bar migration and the bar wavelength. However, the dimensionless tractive force was decreased by it.

Micromirrors Driven by Detached Piezoelectric Microactuators For Low-voltage and Wide-angle Rotation (저전압 대회전을 위한 분리된 압전 구동기에 의한 미소거울)

  • Kim, Sung-Jin;Jin, Young-Hyun;Lee, Won-Chul;Nam, Hyo-Jin;Bu, Jong-Uk;Cho, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested prototypes of TMDs for single-axis and dual-axis rotation, respectively. The single-axis TMD generates the static rotational angle of $6.1^{\circ}$ at 16 VDC, which is 6 times larger than that of single-axis TMA, $0.9^{\circ}$. However, the rotational response curve of TMD shows hysteresis due to the static friction between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is due to the static friction caused by the initial contact force of the PZT actuaor. Without the initial contact force, the rotational response curve of TMD shows linear voltage-angle characteristics. The dual-axis TMD generates the static rotational angles of $5.5^{\circ}$ and $4.7^{\circ}$ in x-axis and y-axis, respectively at 16 VDC. The measured resonant frequencies of dual-axis TMD are $2.1\pm0.1$ kHz in x-axis and $1.7\pm0.1$ kHz in y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by 16 Vp-p sinusoidal wave signal at room temperature.

Effects of Growth Rate and III/V Ratio on Properties of AlN Films Grown on c-Plane Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy

  • Lim, Se Hwan;Shin, Eun-Jung;Lee, Hyo Sung;Han, Seok Kyu;Le, Duc Duy;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.579-585
    • /
    • 2019
  • In this study, we investigate the effect of Al/N source ratios and growth rates on the growth and structural properties of AlN films on c-plane sapphires by plasma-assisted molecular beam epitaxy. Both growth rates and Al/N ratios affect crystal qualities of AlN films. The full width at half maximum (FWHM) values of ($10{\bar{1}}5$) X-ray rocking curves (XRCs) change from 0.22 to $0.31^{\circ}$ with changing of the Al/N ratios, but the curves of (0002) XRCs change from 0.04 to $0.45^{\circ}$ with changing of the Al/N ratios. This means that structural deformation due to dislocations is slightly affected by the Al/N ratio in the ($10{\bar{1}}5$) XRCs but affected strongly for the (0002) XRCs. From the viewpoint of growth rate, the AlN films with high growth rate (HGR) show better crystal quality than the low growth rate (LGR) films overall, as shown by the FWHM values of the (0002) and ($10{\bar{1}}5$) XRCs. Based on cross-sectional transmission electron microscope observation, the HGR sample with an Al/N ratio of 3.1 shows more edge dislocations than there are screw and mixed dislocations in the LGR sample with Al/N ratio of 3.5.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.