• Title/Summary/Keyword: Crop water stress

Search Result 258, Processing Time 0.028 seconds

Grain Yield and Physiological Responses of Water Stress at Reproductive Stage in Barley (보리 생식생장기의 수분부족이 수량 및 몇 가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Kwon, Yong-Woong;Park, Jong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.263-269
    • /
    • 1997
  • To cope with increasing importance of water stress in food crop production, some physiological characteristics, their cultivar-differences and grain yield of winter barley cultivars in response to water stress during reproductive stages were studied employing three covered-barley cultivars, Milyang 12, Durubori, and Olbori, one naked-barley cultivar, Baegdong, and one two-row malting-barley cultivar, Hyangmaeg. The barley grown in pot-soil was conditioned for 10 days under water stress, varying the time of water stress : 20 days before heading, 10 days before heading and the time of heading. The decrease in growth due to water stress varied greatly with the cultivars and time of water stress. The greatest injury occurred when water stress was imposed for 10 days from 10 days before heading : the culm length of water-stressed plants have shown reduced by 85∼98% of the non-stressed; the number of spikes per plant by 52∼83%; the number of grains per spike by 71∼86%; 1,000-grain weight by 80∼84%; yield per pot by 60∼94%. The number of spikes per plant as one of yield components was most sensitively affected. As a whole, the drought resistance of cultivars was high in the order of Olbori> Milyang 12 and Durubori> Hyangmaeg>Baegdong. On rewatering the plants after termination of the water stress treatment the recovery rate of free proline content and relative turgidity of flag leaf were higher in 3 covered-barley cultivars, and lower in cultivars Baegdong and Hyangmaeg.

  • PDF

Estimation of Optimal and Minimal Water Requirement for Chinese Cabbage and Maize on Water Management using Weighable Lysimeters (중량식 라이시미터에서 물관리에 따른 배추, 옥수수의 적정 및 최소 물 필요량 산정)

  • Ok, Jung-hun;Han, Kyung-hwa;Hur, Seoung-oh;Hwang, Seon-Ah;Kim, Dong-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • In this study, we performed to evaluate the water balance during the cultivation of Chinese cabbage and maize according to the soil type and water management method using weighable lysimeters, and to estimate the crop water stress coefficient and minimal water requirement by considering crop productivity and water deficiency. In 2018, Chinese cabbage cultivation period was not irrigated due to frequent rainfall two weeks after planting, so there was no difference in irrigation amount between the non-irrigated and the irrigated and little difference in crop yield. Excluding the Chinese cabbage cultivation in 2018, in the cultivation of Chinese cabbage and maize, the crop yield of irrigated plots was higher than that of non-irrigated plots. The evapotranspiration of irrigated plots was also generally higher than non-irrigated plots. Crop yield and evapotranspiration are closely related, and transpiration is active as biomass increases. The crop water stress coefficients in the middle and the late stage were 0.8 and 0.8 for Chinese cabbage and 0.8 and 0.5 for maize, respectively. The minimal water requirements for Chinese cabbage and maize were 82.0% and 68.8%, respectively, compared to the optimal water requirements (239.4 mm for Chinese cabbage and 466.9 mm for maize). These results can be used as basic data for water management for crop cultivation by securing the minimum amount of irrigation in case of water deficiency.

Characteristics of inorganic nutrient absorption of potato (Solanum tuberosum L.) plants grown under drought condition

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung;Lee, Yonggyu;Kim, Juil;Ji, Samnyeo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.181-181
    • /
    • 2017
  • Global warming and climate change have been one of the most important problems last 2 decades. Global warming is known to cause abnormal climate and influence ecology, food production and human health. According to climate change model global warming is causing expansion of drought and increase of evaporation. Therefore, securing water in agriculture has been an important issue for crop cultivation. As potato is susceptible to drought, water shortage generally results in decrease of yield and decrease of biomass. In this research, we investigated characteristics of inorganic nutrient absorption and growth of plants grown under drought condition. Plants were sampled in sites of Cheong-ju and Gangneung, where the severity of drought stress were different. During the growth period in Gangneung, total rainfall in 2016 decreased by 50% compared with those in last 5 years average. Especially, there was almost no rain in tuber enlargement period (from mid-May to mid-June). On the other hand, the total rainfall in of Cheong-ju was is similar to those in last 5 years average. Inorganic components including K, Ca and Mg and plant growth factors such as plant length, stem length, leaf area index and plant biomass were investigated. Tuber yields in both areas were investigated at harvest. Growth period of plants was is longer in Cheong-ju than that in Gangneung. Contents of all inorganic components were higher in plants grown in Cheong-ju than in Gangneung. The results were attributed to higher production of plant biomass in Cheong-ju. Considering the results, severe drought stress conditions in Gangneung accelerated plant aging and resulted in low plant growth. Although total yield was greatly reduced under drought stress the rate of commercial yield was is not significantly different with non-drought conditions.

  • PDF

Identification of genes related to ER stress in bZIP28 gene transgenic potato plant

  • Kim, Dool Yi;Kim, Kyung Hwa;Choi, Man Soo;Ok, Hyun Choog;Kim, Jae Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.153-153
    • /
    • 2017
  • Potato (Solanum tubersosum L.) is susceptible to various environmental stresses such as frost, high temperature, and drought. Enhancement of potato drought tolerance can reduce yield loss under drought that has negative effect on potato tuber growth. Genetic engineering can be utilized to achieve this goal, but such approaches using endogenous potato genes have rarely been applied. Since unpredictable global weather changes cause more severe and frequent water limiting conditions, improvement of potato drought tolerance can minimize such adverse effects under drought and can impact on sustainable potato production. Genetic engineering can be utilized to improve potato drought tolerance, but such approaches using endogenous potato genes have rarely been applied. We were obtained AtbZIP28 gene transgenic potato plants. It is identified transcript levels at various stress conditions, polyethylene glycol (PEG), NaCl, abscisic ${\underline{acid}}$ (ABA). Also, For identification to regulate ER stress response genes in AtbZIP28 gene transgenic potato plant, we screened seven potato genes from RNA-seq analysis under TM treatment. Five and two genes were up- and down-regulated by TM, respectively. Their expression patterns were re-examined at stress agents known to elicit TM, DTT, DMSO and salt stress.

  • PDF

Physiological and Proteome Responses of Korean F1 maize (Zea mays L.) Hybrids to Water-deficit Stress during Tassel Initiation (옥수수 영양생장기 한발 스트레스에 의한 광합성의 생리적 반응 및 프로테옴 변화 분석)

  • Bae, Hwan Hee;Kwon, Young-Sang;Son, Beom-Young;Kim, Jung-Tae;Go, Young Sam;Kim, Sun-Lim;Baek, Seong-Bum;Shin, Seonghyu;Kim, Sang Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.422-431
    • /
    • 2019
  • Severe droughts in spring have occurred frequently in Korea in recent years, exerting a critical impact on corn yield. Therefore, it is necessary to find physiological and/or molecular indicators of the response to drought stress in maize plants. In this study, we investigated the effects of water-deficit stress on two Korean elite F1 maize hybrids, Ilmichal and Gwangpyeongok, by withholding water for 10 days at tassel initiation. The water deficit drastically reduced the relative leaf water content, leaf number, leaf area, and stem length, leading to dry matter reduction. Moreover, it reduced the SPAD values and stomatal conductance of leaves in drought-stressed plants of both hybrids. Importantly, the number of leaves and SPAD value were non-destructive and easy to investigate in response to water-deficit stress, suggesting that they may be useful indicators for screening drought-tolerant genetic resources. We detected more than 100 spots that were differentially accumulated under drought stress. Of these spots, a total of 21 protein spots (≥1.5-fold) from drought-exposed maize leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Functional annotation using Gene Ontology analysis revealed that most of the identified proteins were involved in carbohydrate metabolism, stress response fatty acid catabolism, photosynthesis, energy metabolism, and transport. The protein expression levels were increased in both Ilmichal and Gwangpyeongok, except for triosephosphate isomerase, fructose-bisphosphate aldolase, and an uncharacterized protein. The lactoylglutathione lyase delta (3,5)-delta (2,4)-dienoyl-CoA isomerase was overexpressed in Gwangpyeongok only. The results obtained from this study suggest that the drought-specific genes may be useful as molecular markers for screening drought-tolerant maize genotypes.

Effects of Soil Moisture Content on Leaf Water Potential and Photosynthesis in Soybean Plants (토양성분이 콩의 잎 수분포텐셜 및 광합성에 미치는 영향)

  • 류용환;이석하;김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.168-172
    • /
    • 1996
  • The soil moisture content and its relation to plants may be important in determining the crop growth and yield. The present study was undertaken to evaluate the leaf water potential and photosynthetic activity in soybean plants as affected by the timing of soil water stress. The soybean variety, 'Tachinagaha', was grown in a pot. The 15 day-old seedlings were subject to the three levels of soil moisture content(25, 40 and 55%) for 25 days. Then the treated soybean plants were placed again at the level of 25% soil moisture content for 25 days, and were compared with the control which was well-watered at 40% level for whole growth period. Soybean plants grown under continuous drought showed higher apparent photosynthetic rate(AP) than those under well-watering /drought in the first /second water treatment, suggesting that AP was adjusted after previous acclimation to drought. Over a wide range of photosynthetic photon flux densities(PPFD), drought or excessive water stress resulted in the decrease in AP when compared with the control. AP and stomatal conductance were decreased in soybean plants subject to water deficit stress, suggesting that AP and stomatal conductance were more sensitive to drought than excessive water stress.

  • PDF

Development of Easy Equation for Crop Water Stress Index (CWSIEE) Using the Temperature Difference between Canopy and Air (Tc-Ta) of Fruit Trees (엽온과 기온의 차이를 이용한 노지 과수의 작물 수분 스트레스 지수 산정 간편식 개발)

  • Choi, Yonghun;Lee, Sangbong;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Park, Jeonghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.85-91
    • /
    • 2020
  • In order to calculate the Crop Water Stress Index (CWSI), it is necessary to collect weather data (air temperature, humidity, wind speed and solar radiation) and canopy temperature. However, it is not always available to have necessary data sets for CWSI calculation. Therefore, this study was aimed to develop an easy and simple CWSI equation (CWSIEE) using only two data, air and canopy temperatures. Infrared sensors and weather sensors were installed on apple and peach trees and nearby a study area and every ten-minute data were collected from June to October in 2018 and 2019, respectively. A relationship between air-canopy temperature difference and CWSI was statistically analyzed and used to develop CWSIEE using the three dimensional Gaussian model. The performance of CWSIEE against original CWSI showed R2 and NSE to 0.780 and 0.710 for apple trees and R2 and NSE to 0.884 and 0.866 for peach trees. This study found that the level of crop water stress could be easily calculated using CWSIEE with only air and canopy temperature data.

Effect of Water Stress on Yield and Quality of Ligusticum chuanxiong Hort. (토양수분(土壤水分)이 토천궁(土川芎)의 수량(收量) 및 품질(品質)에 미치는 영향(影響))

  • Kim, Chung-Guk;Kang, Byeung-Hoa;Kim, Sok-Dong;Lee, Sang-Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The experiment was conducted to investigate the effect of water stress on yield and quality of Ligusticum chuanxiong Hort. The water stress treatment was imposed artificially on seedling, flowering and rhizome enlargement stage of the plant. The root yield rate decreased to 19.1%, 18.2% and by the water stress treatment at rhizome enlargement, seedling and flowering stage, respectively. Portion of the products having commercial quality grade (above 20g of rhizome weight) was 93.4% at control plot, while it was 85%, 81.7% and 78.3% when stressed for water at seedling, flowering and root enlargement stage, respectively. Content of extract was the higher in the order of control, water stressed at rhizome enlargement, flowering and the seedling stage. Postive correlationship was found between yield of rhizome and rootlet yield or economic production ratio, and between dry weight of stem and rootlet yield.

  • PDF

Soybean Growth and Yield as Affected by Spacing of Drainage Furrows in Paddy Field

  • Cho, Jin-Woong;Lee, Jung-June;Oh, Young-Jin;So, Jung-D.;Won, Jun-Yeon;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • This study was conducted to determine the optimum number of inter-rows according to distance of drainage furrow (DF) for running-off excessive-water stress (EWS) in paddy field. The most soil water potential was shown in high ridge (distance of DF by 70 cm) cultivation and the soil water potential showed increasing tendency in over four inter-rows cultivation by DF. The growth of soybean reduced by extended inter-row and its reducing level was high, especially, over four inter-rows (DF distance by 2.8 m) because of EWS. The photosynthetic rate decreased in the more extensive field by distance of DF at V5 and R2 stages, especially, in over four interrows cultivation. Also, root activity decreased at wider DF. The yield was reduced with wider distance of DF more extensively, the highest yield of 270 g per $m^2$ at the every row, but yield showed decreasing tendency at over the $4^{th}$ row (2.8 m) cultivation. Soybean cultivation in paddy field could be founded with DF of every other or $4^{th}$ row.