Browse > Article
http://dx.doi.org/10.5389/KSAE.2020.62.5.085

Development of Easy Equation for Crop Water Stress Index (CWSIEE) Using the Temperature Difference between Canopy and Air (Tc-Ta) of Fruit Trees  

Choi, Yonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Lee, Sangbong (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Kim, Minyoung (R&D Coordination Division, Research Policy Bureau, Rural Development Administration (RDA))
Kim, Youngjin (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Jeon, Jonggil (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Park, Jeonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.62, no.5, 2020 , pp. 85-91 More about this Journal
Abstract
In order to calculate the Crop Water Stress Index (CWSI), it is necessary to collect weather data (air temperature, humidity, wind speed and solar radiation) and canopy temperature. However, it is not always available to have necessary data sets for CWSI calculation. Therefore, this study was aimed to develop an easy and simple CWSI equation (CWSIEE) using only two data, air and canopy temperatures. Infrared sensors and weather sensors were installed on apple and peach trees and nearby a study area and every ten-minute data were collected from June to October in 2018 and 2019, respectively. A relationship between air-canopy temperature difference and CWSI was statistically analyzed and used to develop CWSIEE using the three dimensional Gaussian model. The performance of CWSIEE against original CWSI showed R2 and NSE to 0.780 and 0.710 for apple trees and R2 and NSE to 0.884 and 0.866 for peach trees. This study found that the level of crop water stress could be easily calculated using CWSIEE with only air and canopy temperature data.
Keywords
Crop water stress index (CWSI); canopy temperature; air temperature; CWSI easy equation;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Agam, N., Y. Cohen, V. Alchanatis, and A. Ben-Gal, 2013. How sensitive is the CWSI to changes in solar radiation?. International Journal of Remote Sensing 34(17): 6109-6120. doi:10.1080/01431161.2013.793873.   DOI
2 Bohnert, H. J., Q. Gong, P. Li, and S. Ma, 2006. Unraveling abiotic stress tolerance mechanisms-Getting genomics going. Current Opinion in Plant Biology 9(2): 180-188. doi:10.1016/j.pbi.2006.01.003.   DOI
3 Choi, Y., M. Kim, W. Oh, J. Cho, S. Lee, Y. Kim, J. Jeon, and S. Yun, 2019. Statistical analysis of determining optimal monitoring time schedule for crop water stress index (CWSI). Journal of the Korean Society of Agricultural Engineers 61(6): 73-79 (in Korea). doi:10.5389/KSAE.2019.61.6.073.
4 Choi, Y. M., S. M. Jung, and D. G. Choi, 2017. Effects of heavy rain during rainy season and drainage methods on soil water content, photosynthesis characteristics, and growth in 'jinok' and 'campbell early' grapes. Korean Journal of Agricultural and Forest Meteorology 19(1): 1-9 (in Korean). doi:10.5532/KJAFM.2017.19.1.1.   DOI
5 Dresselhaus, T., and R. Huckelhoven, 2018. Biotic and abiotic stress responses in crop plants. Agronomy 8(11):267-272. doi:10.3390/agronomy8110267.   DOI
6 Jeong, H., R. Jeong, J. Ryu, D. Oh, S. Choi, and J. Cho, 2019. Preliminary growth chamber experiments using thermal infrared image to detect crop disease. Korean Journal of Agricultural and Forest Meteorology 21(2):111-116 (in Korea). doi:10.5532/KJAFM.2019.21.2.111.   DOI
7 El shazly, S. M., 1996. Estimation of hourly and daily global solar radiation at clear days using an approach based on modified version of gaussian distribution. Advances in Atmospheric Sciences 13(3): 349-358.   DOI
8 Guo, Z., 2017. Daily variation low of solar radiarion flux density incident on the horizontal surface. Journal of Earth Science & Climatic Change 8(9): 1000412. doi:10.4172/2157-7617.1000412.
9 Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter Jr., 1981. Canopy temperature as a crop water stress indicator. Water Resources Research 17(4): 1133-1138. doi:10.1029/WR017i004p01133.   DOI
10 Jones, H. G., 2010. Remote detection of crop water stress and distinguishing it from other stresses. XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 922, 23-34. doi:10.17660/ActaHortic. 2011.922.2.
11 O'Shaughnessy, S., S. R. Evett, P. D. Colaizzi, and T. A. Howell, 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management 107: 122-132. doi:10.1016j.agwat.2012.01.018.   DOI
12 Kim, M., Y. Choi, J. Cho, S. Yun, J. Park, Y. Kim, J. Jeon, and S. Lee, 2019. Response of crop water stress index (CWSI) and canopy temperature of apple tree to irrigation treatment schemes. Journal of the Korean Society of Agricultural Engineers 61(5): 23-31 (in Korea). doi:10.5389/KSAE.2019.61.5.023.   DOI
13 Lee, H. S., S. K. Kim, H. J. Lee, J. H. Lee, S. An, and S. G. Lee, 2019. Development of crop water stress index for kimchi cabbage precision irrigation control. Horticultural Science and Technology 37(4): 490-498 (in Korea). doi:10.7235/HORT.20190049.   DOI
14 Li, L., D. C. Nielsen, Q. Yu, L. Ma, and L. R. Ahuja, 2010. Evaluating the crop water stress index and its correlation with latent heat and $CO_{2}$ fluxes over winter wheat and maize in the North China plain. Agricultural Water Management 97(8): 1146-1155. doi:10.1016/j.agwat.2008.09.015.   DOI
15 Limpus, S., 2009. Isotropic and anisotropic characterisation of vegetable crops. Department on Primary Industries and Fisheries, Queensland.
16 Nam, S. W., Y. S. Kim, and D. U. Seo, 2014. Change in the plant temperature of tomato by fogging and airflow in plastic greenhouse. Protected Horticulture and Plant Factory 23(1): 11-18 (in Korean). doi:10.12791/KSBEC.2014.23.1.011.   DOI
17 Song, E. Y., and J. H. Lee, 2012. Plant responses to environmental stresses. Nanotechnology in Biomedical Science 32(4): 27-34 (in Korean).
18 Woo, Y. H., 2013. Moisture and measuring and control in soil and plant. https://www.af.ac.kr/planweb/board/download.9is?fileUid=0000000052e385d90152ed26d5432e9e&boardUid=816ac6da51a3db470151b3d169a5019b.
19 Yun, S. K., S. J. Kim, E. Y. Nam, J. H. Kwon, Y. S. Do, S. Y. Song, M. Kim, Y. Choi, G. Kim, and H. Shin, 2020. Evaluation of water stress using canopy temperature and crop water stress index (CWSI) in peach trees. Protected Horticulture and Plant Factory 29(1): 20-27 (in Korea). doi:10.12791/KSBEC.2020.29.1.30.   DOI