• Title/Summary/Keyword: Crop system

Search Result 1,844, Processing Time 0.104 seconds

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

Identification of Crop Growth Stage by Image Processing for Greenhouse Automation (영상정보를 이용한 자동화 온실에서의 작물 성장 상태 파악에 관한 연구)

  • 김기영;류관희;전성필
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.25-30
    • /
    • 1999
  • The effectiveness of many greenhouse environment control methodologies depends on the growth information of crops. Acquisition of the growth information of crops requires a non-invasive and continuous monitoring method. Crop growth monitoring system using digital imaging technique was developed to conduct non-destructive and intact plant growth analyses. The monitoring system automatically measures crop growth information sends an appropriate control signal to the nutrient solution supplying system. To develop the monitoring system, a linear model that explains the relationship between the fresh weight and the top projected leaf area of a lettuce plant was developed from an experiment. The monitoring system was evaluated buy successive lettuce growing experiments. Results of the experiments showed that the developed system could estimate the fresh weight of lettuce from a lettuce image by using the linear model and generate an EC control signal according to the lettuce growth stage.

  • PDF

Simulation of crop growth under an intercropping condition using an object oriented crop model (객체지향적 작물 모델을 활용한 간작조건에서의 작물 생육 모의)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Seo, Beom-Seok;Ban, Ho-Young;Park, Jinyu;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.214-227
    • /
    • 2018
  • An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent weather, crop, soil, and crop management, respectively. Objects, which are instance of class, were linked to construct an integrated system for crop growth simulation. In a case study, yield of corn and soybean, which was obtained at an experiment farm in Rural Development Administration from 1984 to 1986, were compared with yield simulated using the integrated system. The integrated system had relatively low error rate of corn yield, e.g., <4%, under sole and intercropping conditions. In contrast, the system had a relatively large underestimation error for above ground biomass except for grain compared with those observed for corn and soybean. For example, estimates of biomass of corn leaf and stem was 31% lower than those of observed values. Although the integrated system consisted of simple models, the system was capable of simulating crop yield under an intercropping condition. This result suggested that an existing process-based model would be used to have more realistic simulation of crop growth once it is reengineered to be compatible to the integration system, which merits further studies for crop model improvement and implementation in object oriented paradigm.

On-Farm Study of the System of Rice Intensification (SRI) of Rainfed Lowland in Southern Cambodia (캄보디아 남부 천수답지역의 벼 집약관리재배 시스템(SRI)에 대한 현장 연구)

  • Lee, Yun-Ho;Seo, Myung-Chul;Cho, Jung-Il;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Sang, Wan-Gyu
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.285-291
    • /
    • 2018
  • The System of Rice Intensification (SRI) has been spread very quickly in southern Cambodia. To understand the motivation of farmers in adapting SRI, and its benefits, we conducted an on-farm study at Popel commune, Tramkak district, Takeo province in southern Cambodia, during the 2012 and 2013 wet season. We noticed a significant difference between SRI and conventional farmers' practices (FP) in rainfed lowland rice ecosystem. Despite of low nitrogen input, without chemical fertilizers, high grain yield was achieved in SRI 1 (6.0 t ha) and SRI2-Bottom ($7.2t\;ha^{-1}$) in 2013. SRI 1 and SRI 2 of panicle and number of panicle were high than SR 3, FP 2, and FP 3 due to early transplant. Relationships between total number of spikelet and plant nitrogen were ($r^2=0.95$) highly positive at harvest. SRI fields were, most of them achieving highly superior yield and number of panicle compared to their FP fields. The results indicated that SRI practices of planting younger seedling, with organic material and topography of paddy, lead to increased grain yield.

Studies on the Cropping System of Sesame(Sesamum indicum L.) of Korea (전.후작물 도입에 의한 참깨 작부체계에 관한 연구)

  • 남상영;김인재;김민자;이철희;김태수;방진기
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.147-152
    • /
    • 2004
  • To increase the utilization of farming lard and the income of farmers four cropping systems by introducing two crops in the cultivation of sesame and perilla were tested from May, 2001 to June, 2002. Weed occurrence was observed abunantly at the in barley+sesame cropping system. Among cropping systems, weed in barley+sesame was greater in post-crop than in pre-crop, but other cropping systems were in pre-crop. Pre- or post-crops at the barley+sesame, sesame+chinese cabbage showed good growth. The income of cropping system containing sesame was higher 21% and 61% in barley+sesame and sesame+chinese cabbage, than in sesame and perilla mono-crop systems respectively. The sesame+chinese cabbage was labor-saying and cost down cropping system, because polyethylene film of pre-crop was reused in post-crop. But when perilla was introduced as post-crop of sesame, the delayed seed time resulted in decreased growth and grain yield. Soil physical properties were improved at the sesame+chinese cabbage and barley+sesame cropping systems.