• Title/Summary/Keyword: Crop production system

Search Result 526, Processing Time 0.027 seconds

Developing a decision support system for selecting new crops

  • Jung, Guhyun;Jeon, Myounghee;Lee, Jinhong;Park, Heundong;Lee, Seyong;Kim, Joonyong
    • Agribusiness and Information Management
    • /
    • v.10 no.2
    • /
    • pp.8-17
    • /
    • 2018
  • Due to changes in the agricultural market environment and both overseas and domestic farming conditions, uncertainties in agricultural production and management are becoming greater. Hence, there is a stronger need for farmers to choose crops in the optimal condition. This research aims to introduce the result and process of developing a decision support system for selecting crops, aimed to assist farmers in selecting the optimal crops most suitable in the given situation. There are basically three main factors to consider in the decision-making process for farmers when selecting a crop to introduce to their lands. First of all, one must consider how much profit crop A will produce when it is cultivated. Secondly, one must consider which crop to cultivate in order to earn a certain amount of profit. Thirdly, one must consider what is the best way to maximize Farm A's business profit. For instance, a farm may have land as its resource, and one must research which location, type of crop, level of technology, and so forth, to maximize profit.This research creates a database of the profitability of a total of 180 crop types by analyzing Rural Development Administration's survey of agricultural products income of 115 crop types, small land profitability index survey of 53 crop types, and Statistics Korea's survey of production costs of 12 crop types. Furthermore, this research presents the result and developmental process of a web-based crop introduction decision support system that provides overseas cases of new crop introduction support programs, as well as databases of outstanding business success cases of each crop type researched by agricultural institutions.

Manipulating Isoflavone Levels in Plants

  • Jung Woo-Suk;Chung Ill-Min;Heo Hwa-Young
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • Metabolic engineering for production of isoflavones in nonlegume plants could distribute the health benefits of these phytoestrogens in more widely-consumed grains. Series of investigation to check the ability of the heterologous isoflavone synthase enzyme to interact with the endogenous phenylpropanoid pathway have been conducted. Overall, results provide possibility of production of isoflavonoids in several plant tissue systems including soybean and nonlegumes. In tissue that undergoes naturally enhanced synthesis of anthocyanins, genistein production was enhanced. In a monocot cell system, introduced expression of a transcription factor regulating genes of the anthocyanin pathway was effective in conferring the ability to produce genistein in the presence of the isoflavone synthase gene. However, in this case the intermediate accumulated to high levels indicating an inefficiency in its conversion. Introduction of a third gene, chalcone reductase, provided the ability to synthesize an additional substrate of isoflavone synthase resulting in production of the isoflavone daidzein. These research efforts provide insight into requirements for metabolic engineering for isoflavone production in nonlegume dicot and monocot tissues.

Cropping Systems for Vegetable Peanut and Environmental Effect of Residue Incorporation in Soil (풋땅콩 작부체계와 수확 후 잔존 유기물의 친환경적 효과)

  • 김정태;배석복;박향미;윤을수;김민태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.452-459
    • /
    • 2003
  • A new demand for vegetable peanut (Arachis hypogaea L.) in Korea has increased farmers interest in growing vegetable peanut. Compared to grain peanut production, vegetable peanut production enables the growth period to be shortened by 20 or 30 days and farmers to adopt various cropping systems and to return crop residues in the soil. With the purpose of establishing desirable cropping systems for sustainable vegetable peanut production, three field experiments were conducted from 2000 to 2001 at Milyang, the southeastern part of Korea. Main focuses were given into the effect of cropping systems for vegetable peanut production on each crop's yield and soil sustainability. The cropping systems investigated were single vegetable peanut, peanut-radish-green barley, peanut-barley, and peanut-garlic cropping system, with or without crop residue incorporation in the soil. Among the cropping systems investigated for sustainable vegetable peanut production, peanut-only and peanut-radish-green barley cropping systems showed vulnerable to diseases and lodging while peanut-barley and peanut-garlic cropping systems showed higher stability in response to diseases and lodging, consequently leading to higher yield potential of vegetable peanut production. In the peanut-barley cropping system, both barley and peanut residues returned to the soil played an important role in soil improvement as well as in significantly increased grain yield of peanut and barley. A particular notice was taken to the pronounced increase in Trichoderma population and the amount of nitrogen mineralization induced by the returned barley residue. Soil structure, compactness, pH, and fertility were positively influenced by the returned crop residues, which apparently increased sustainability in vegetable peanut production systems.

Seed Production and Distribution System Improvement of Medicinal Crop Seeds (약용작물 종자 생산 및 보급체계 개선)

  • Jang, Woo Whan;Park, Jae Sang;Rubenecia, Maria. Rosnah Ultra.;Park, Chung Beom;Ahn, Young Sup;Lee, Sang Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.4
    • /
    • pp.286-294
    • /
    • 2013
  • Increasing concern for the health, well-being, and income of the people has expectedly brought continuous increase in the industrial value of medicinal plants in recent years as these are also used in foods and cosmetics. However, Korea's increased import of these products from China due to the FTA contract causes negative effects on its industrial value. In this regard, various measures for medicinal crop seed development and production, organization and expansion of circulation and forest land use deregulation are needed to promote the agricultural food industry including medicinal plants. As a measure, first, a database of medicinal plants should be built that can help to promote the national medicinal industry and the seed management system. Second, agricultural productivity should be enhanced via the development and supply of varieties of high quality medicinal plants. Third, there should be a good practice of the system maintenance for the production and supply of medicinal crop seeds. Fourth, production and distribution system of medicinal plants should be established by standardization of high quality seeds. Nowadays, the consumption pattern of medicinal crops is changing from direct ingestion to cosmetics, drugs, and food and this is expected to increase continuously. Consequently, the increased production of medicinal crops will support the development policy and the institutional improvement in response to this trend of the positive change of industrialization.

Studies on cropping system for year-round forage crops production

  • Kang, Heonil;Lee, Donghyun;Han, Sangcheol;Choi, Insoo;Yun, Eulsoo;Lee, Jongki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.333-333
    • /
    • 2017
  • This study was conducted to establish of cropping system for year-round forage crops production in east-southern part of Korea and investigated their productivity and feed values. Cropping systems were tested in experiment using oat (cv. Highspeed and Darkhorse) in spring and autumn season, corn (cv. Kwangpyeongok) and sorghum (ss-450) in summer season and rye (cv. Gogu) and triticale (cv. Joseong) in winter season. Considering the forage productivity and feed value such as acid detergent fiber (ADF), neutral detergent fiber (NDF) and total digestive nutrients (TDN), this result suggest that three cropping system for year-round forage crops production. The combinations with triticale (winter), corn or sorghum (summer) and oat (autumn) were would be suitable ones. And also the combinations with rye (winter), corn or sorghum (summer) and oat (autumn) were would be suitable. If forage crops cultivation was started in spring season, the combinations with oat (spring), oat (autumn), triticale or rye (winter), corn or sorghum (summer) and oat (autumn) were would be appropriable. For the more suitable cropping system, we are proceeding on verification experiment of year-round forage crops.

  • PDF

An Analysis of the Rice Situation in Nicaragua for Improving National Production.

  • Chang-Min Lee;Oporta Juan;Ho-Ki Park;Hyun-Su Park;Jeonghwan Seo;Man-Kee Baek;Jae-Ryoung Park;O-Young Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.90-90
    • /
    • 2022
  • Nicaragua is located in Central America, climatic conditions are considered tropical dry forest. Statistics reflex that in Nicaragua exits 24,000 rice farmers. National rice production only covers 73% of the national consumption. It exists two sowing system: irrigation and rainfed. Varieties used in both systems are mid-late maturity (120-135 days), there are 14 released varieties for irrigation, eight for rainfed, and eight landraces used in rainfed. The current breeding system (introduction of lines from Colombia) has increased the national production, however, has some limitation due to the lack of enough variability, reducing the proability of finding good genotypes and therefore the possibility of satisfying 100% of the demand. The purpose of this study was to analyze the problems that must be resolved in the short and long term to improve rice productivity in Nicaragua. In this paper we explain some proposal for an improvement plan. The selection of varieties with high adaptability to various cultivation environmental conditions it is necessary, also to thoroughly manage seed purity to supply certified seeds. In rice cultivation technology, it needs to improve seedling standing and weeding effect by improving soil leveling and water-saving cultivation technology. Also, proper fertilization and planting density must be established in irrigated and rain-fed areas. Furthermore, capacity must be strengthened by collecting and training with the most recent agricultural technology information, as well as by revitalizing the union rather than the individual farmer. It is necessary to develop varieties highly adaptable to the Nicaraguan cultivation environment, as well as to expand irrigation facilities and cultivation technology suitable for weather conditions in rain-fed areas. Last, it is necessary to maintain the consistency of agricultural policy for continuous and stable rice production in response to climate change events such as drought or intermittent heavy rain.

  • PDF

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF

Utilization of Soil Resources for Maximum Production of Food Grains (식량 최대생산을 위한 토양자원 이용)

  • Sin Je Seong;Kim Lee Yeol
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.11a
    • /
    • pp.145-167
    • /
    • 1999
  • Our self-sufficiency of food has become less than $30{\%}$ and our nation is highly dependant on world's grain market for food. which is unstable in long term due to the world population growth faster than food production. Therefore, it is a great possibility that food might become a political weapon by way of its global shortage. its purchasing difficulty in international free trade market. and the resultant price rising. Our maximal capability of food production has become the most outstanding problem in the dimension of future food security. It would be the utmost scheme for maximal production of food to realize the maximal utilization of arable land through the enlargement of sufficient farming land and the conversion of rotation system for the more grain production. Extensional enlargement of arable land can be positively executed through the development of farming land in domestic and abroad countries. The readjustment of arable land and the installation or irrigation and drainage system can enforce the farming basement for maximal utilization of arable land through the improved rotation between paddy and upland. The prevention policy against farming land encroachment should be strictly executed through grain production encouragement on resting or marginal lands and regulation of utilization conversion for the other than food production on high grade farming lands. It is also required urgently to develope high yielding and high quality varieties through advanced genetic technology for the improvement of unit area yield, especially of wheat, corn. and soybean we import in large quantity The maximal utilization of arable land for the highest production of food can be realized through rational rotation system, the most adaptable crop cultivation on the suitable land, and the most optimal fertilization through the GIS analysis of agricultural environment information on the basis of the computerized soil resource data on super detailed soil maps(1:5000) surveyed plot by plot of whole nation.

  • PDF

Improvement of Hairy Vetch Seed Production by Mixture Cropping of Hairy Vetch and Triticale

  • Seo Jong Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • Demand for the domestic hairy vetch seed production will be increased with the increasing interest of environment-friendly agriculture in Korea. This study was conducted during from 2000 fall to 2003 spring at upland field of National Institute of Crop Science in Suwon, Korea to compare wheat and triticale (TC) as stake crop of hairy vetch (HV), and to know proper seeding rates and ratios between TC and HV for the maximum HV seed production. As supporting crop of HV, TC was superior to wheat at the points of higher HV seed yield, stronger TC stalk for supporting, consistence of ripening stage of two seeds. In seeding method, row seeding was superior to broadcast seeding at the points of less lodging and higher HV seed yield. HV seed yield decreased with the increase of TC seeding rate in mixture cropping (row seeding), particularly at TC seeding rates over 5kg/10a. HV seed yield increased with the increase of HV seeding rate at the condition of TC seeding rates under 5kg/10a in spite of higher lodging of mixed crops at higher HV seeding rate due to higher HV aboveground dry matter. Maximum HV seed yield was obtained at TC seeding rate of $1\~1.5kg/10a$ as indicating HV seed yield 176kg/l0a (CV. Madison) at seeding rate of TC 1kg/10a + HV 2 kg/10a in 2001, and HV seed yield 96kg/10a (CV. Common) at seeding rate of TC 1.5kg/10a + HV 4.5kg/10a in 2003. Use of all-purpose combine harvester for harvesting and appliance for separation of mixed seeds using centrifugal force, which are prerequisite for HV seed production, was excellent in the simultaneous seeds production system of HV and TC.

Multi-functionality of honey bees for eco-friendly food production (환경친화적 식량생산을 위한 꿀벌의 다원적 가치)

  • Jung, Chuleui
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.166-175
    • /
    • 2022
  • Current food system has developed with the agricultural innovation to feed the increasing population of the world, but with high costs such as environmental contamination and inequality with low sustainability. Human has developed long history of mutualistic interaction with honey bee. This manuscript describes the multi-functionality of honey bee for food production. Firstly honey bee produces honey, bee pollen, royal jelly and propolis which are rich in functionality. Second honey bee serves as the main pollinator for crop production which is worth for 28% of total crop production values in Korea. Lastly honey bee can be an alternative meat produciton system with lower energy, carbon costs but higher nutritional security. This manuscript described those parts and discussed the multi-functionality of honey bees for eco-friendly food security pursuing lowered environmental cost and carbon-zero strategies in the climate change era.